Lean Premixed Flame Structure in Intense Turbulence

Lean Premixed Flame Structure in Intense Turbulence
Title Lean Premixed Flame Structure in Intense Turbulence PDF eBook
Author Sastri Purushottama Nandula
Publisher
Pages 364
Release 2003
Genre Flame
ISBN

Download Lean Premixed Flame Structure in Intense Turbulence Book in PDF, Epub and Kindle

Turbulent Premixed Flames

Turbulent Premixed Flames
Title Turbulent Premixed Flames PDF eBook
Author Nedunchezhian Swaminathan
Publisher Cambridge University Press
Pages 447
Release 2011-04-25
Genre Technology & Engineering
ISBN 1139498584

Download Turbulent Premixed Flames Book in PDF, Epub and Kindle

A work on turbulent premixed combustion is important because of increased concern about the environmental impact of combustion and the search for new combustion concepts and technologies. An improved understanding of lean fuel turbulent premixed flames must play a central role in the fundamental science of these new concepts. Lean premixed flames have the potential to offer ultra-low emission levels, but they are notoriously susceptible to combustion oscillations. Thus, sophisticated control measures are inevitably required. The editors' intent is to set out the modeling aspects in the field of turbulent premixed combustion. Good progress has been made on this topic, and this cohesive volume contains contributions from international experts on various subtopics of the lean premixed flame problem.

Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane-air Jet Flames

Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane-air Jet Flames
Title Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane-air Jet Flames PDF eBook
Author
Publisher
Pages 13
Release 2015
Genre
ISBN

Download Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane-air Jet Flames Book in PDF, Epub and Kindle

In this study, direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. The simulations were performed using a reduced methane-air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane-air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.

Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane{u2013}air Jet Flames

Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane{u2013}air Jet Flames
Title Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane{u2013}air Jet Flames PDF eBook
Author
Publisher
Pages 13
Release 2015
Genre
ISBN

Download Response of Flame Thickness and Propagation Speed Under Intense Turbulence in Spatially Developing Lean Premixed Methane{u2013}air Jet Flames Book in PDF, Epub and Kindle

Direct numerical simulations of three-dimensional spatially-developing turbulent Bunsen flames were performed at three different turbulence intensities. We performed these simulations using a reduced methane–air chemical mechanism which was specifically tailored for the lean premixed conditions simulated here. A planar-jet turbulent Bunsen flame configuration was used in which turbulent preheated methane–air mixture at 0.7 equivalence ratio issued through a central jet and was surrounded by a hot laminar coflow of burned products. The turbulence characteristics at the jet inflow were selected such that combustion occured in the thin reaction zones (TRZ) regime. At the lowest turbulence intensity, the conditions fall on the boundary between the TRZ regime and the corrugated flamelet regime, and progressively moved further into the TRZ regime by increasing the turbulent intensity. The data from the three simulations was analyzed to understand the effect of turbulent stirring on the flame structure and thickness. Furthermore, statistical analysis of the data showed that the thermal preheat layer of the flame was thickened due to the action of turbulence, but the reaction zone was not significantly affected. A global and local analysis of the burning velocity of the flame was performed to compare the different flames. Detailed statistical averages of the flame speed were also obtained to study the spatial dependence of displacement speed and its correlation to strain rate and curvature.

Fundamentals of Premixed Turbulent Combustion

Fundamentals of Premixed Turbulent Combustion
Title Fundamentals of Premixed Turbulent Combustion PDF eBook
Author Andrei Lipatnikov
Publisher CRC Press
Pages 551
Release 2012-10-24
Genre Science
ISBN 1466510242

Download Fundamentals of Premixed Turbulent Combustion Book in PDF, Epub and Kindle

Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine combustors. Yet researchers face several challenges in dealing with premixed turbulent combustion, from its nonlinear multiscale nature and the impact of local phenomena to the multitude of competing models. Filling a gap in the literature, Fundamentals of Premixed Turbulent Combustion introduces the state of the art of premixed turbulent combustion in an accessible manner for newcomers and experienced researchers alike. To more deeply consider current research issues, the book focuses on the physical mechanisms and phenomenology of premixed flames, with a brief discussion of recent advances in partially premixed turbulent combustion. It begins with a summary of the relevant knowledge needed from disciplines such as thermodynamics, chemical kinetics, molecular transport processes, and fluid dynamics. The book then presents experimental data on the general appearance of premixed turbulent flames and details the physical mechanisms that could affect the flame behavior. It also examines the physical and numerical models for predicting the key features of premixed turbulent combustion. Emphasizing critical analysis, the book compares competing concepts and viewpoints with one another and with the available experimental data, outlining the advantages and disadvantages of each approach. In addition, it discusses recent advances and highlights unresolved issues. Written by a leading expert in the field, this book provides a valuable overview of the physics of premixed turbulent combustion. Combining simplicity and topicality, it helps researchers orient themselves in the contemporary literature and guides them in selecting the best research tools for their work.

Turbulent Combustion

Turbulent Combustion
Title Turbulent Combustion PDF eBook
Author Norbert Peters
Publisher Cambridge University Press
Pages 322
Release 2000-08-15
Genre Science
ISBN 1139428063

Download Turbulent Combustion Book in PDF, Epub and Kindle

The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.

Advanced Turbulent Combustion Physics and Applications

Advanced Turbulent Combustion Physics and Applications
Title Advanced Turbulent Combustion Physics and Applications PDF eBook
Author N. Swaminathan
Publisher Cambridge University Press
Pages
Release 2022-01-06
Genre Technology & Engineering
ISBN 1108572758

Download Advanced Turbulent Combustion Physics and Applications Book in PDF, Epub and Kindle

Explore a thorough and up to date overview of the current knowledge, developments and outstanding challenges in turbulent combustion and application. The balance among various renewable and combustion technologies are surveyed, and numerical and experimental tools are discussed along with recent advances. Covers combustion of gaseous, liquid and solid fuels and subsonic and supersonic flows. This detailed insight into the turbulence-combustion coupling with turbulence and other physical aspects, shared by a number of the world leading experts in the field, makes this an excellent reference for graduate students, researchers and practitioners in the field.