Lattices and Ordered Algebraic Structures

Lattices and Ordered Algebraic Structures
Title Lattices and Ordered Algebraic Structures PDF eBook
Author T.S. Blyth
Publisher Springer Science & Business Media
Pages 311
Release 2005-04-18
Genre Mathematics
ISBN 1852339055

Download Lattices and Ordered Algebraic Structures Book in PDF, Epub and Kindle

"The text can serve as an introduction to fundamentals in the respective areas from a residuated-maps perspective and with an eye on coordinatization. The historical notes that are interspersed are also worth mentioning....The exposition is thorough and all proofs that the reviewer checked were highly polished....Overall, the book is a well-done introduction from a distinct point of view and with exposure to the author’s research expertise." --MATHEMATICAL REVIEWS

Lattices and Ordered Sets

Lattices and Ordered Sets
Title Lattices and Ordered Sets PDF eBook
Author Steven Roman
Publisher Springer Science & Business Media
Pages 307
Release 2008-12-15
Genre Mathematics
ISBN 0387789014

Download Lattices and Ordered Sets Book in PDF, Epub and Kindle

This book is intended to be a thorough introduction to the subject of order and lattices, with an emphasis on the latter. It can be used for a course at the graduate or advanced undergraduate level or for independent study. Prerequisites are kept to a minimum, but an introductory course in abstract algebra is highly recommended, since many of the examples are drawn from this area. This is a book on pure mathematics: I do not discuss the applications of lattice theory to physics, computer science or other disciplines. Lattice theory began in the early 1890s, when Richard Dedekind wanted to know the answer to the following question: Given three subgroups EF , and G of an abelian group K, what is the largest number of distinct subgroups that can be formed using these subgroups and the operations of intersection and sum (join), as in E?FßÐE?FÑ?GßE?ÐF?GÑ and so on? In lattice-theoretic terms, this is the number of elements in the relatively free modular lattice on three generators. Dedekind [15] answered this question (the answer is #)) and wrote two papers on the subject of lattice theory, but then the subject lay relatively dormant until Garrett Birkhoff, Oystein Ore and others picked it up in the 1930s. Since then, many noted mathematicians have contributed to the subject, including Garrett Birkhoff, Richard Dedekind, Israel Gelfand, George Grätzer, Aleksandr Kurosh, Anatoly Malcev, Oystein Ore, Gian-Carlo Rota, Alfred Tarski and Johnny von Neumann.

Introduction to Lattices and Order

Introduction to Lattices and Order
Title Introduction to Lattices and Order PDF eBook
Author B. A. Davey
Publisher Cambridge University Press
Pages 316
Release 2002-04-18
Genre Mathematics
ISBN 1107717523

Download Introduction to Lattices and Order Book in PDF, Epub and Kindle

This new edition of Introduction to Lattices and Order presents a radical reorganization and updating, though its primary aim is unchanged. The explosive development of theoretical computer science in recent years has, in particular, influenced the book's evolution: a fresh treatment of fixpoints testifies to this and Galois connections now feature prominently. An early presentation of concept analysis gives both a concrete foundation for the subsequent theory of complete lattices and a glimpse of a methodology for data analysis that is of commercial value in social science. Classroom experience has led to numerous pedagogical improvements and many new exercises have been added. As before, exposure to elementary abstract algebra and the notation of set theory are the only prerequisites, making the book suitable for advanced undergraduates and beginning graduate students. It will also be a valuable resource for anyone who meets ordered structures.

Partially Ordered Algebraic Systems

Partially Ordered Algebraic Systems
Title Partially Ordered Algebraic Systems PDF eBook
Author Laszlo Fuchs
Publisher Courier Corporation
Pages 242
Release 2014-03-05
Genre Mathematics
ISBN 0486173607

Download Partially Ordered Algebraic Systems Book in PDF, Epub and Kindle

This monograph by a distinguished mathematician constitutes the first systematic summary of research concerning partially ordered groups, semigroups, rings, and fields. The high-level, self-contained treatment features numerous problems. 1963 edition.

Lattices and Ordered Algebraic Structures

Lattices and Ordered Algebraic Structures
Title Lattices and Ordered Algebraic Structures PDF eBook
Author T.S. Blyth
Publisher Springer Science & Business Media
Pages 311
Release 2005-11-24
Genre Mathematics
ISBN 184628127X

Download Lattices and Ordered Algebraic Structures Book in PDF, Epub and Kindle

"The text can serve as an introduction to fundamentals in the respective areas from a residuated-maps perspective and with an eye on coordinatization. The historical notes that are interspersed are also worth mentioning....The exposition is thorough and all proofs that the reviewer checked were highly polished....Overall, the book is a well-done introduction from a distinct point of view and with exposure to the author’s research expertise." --MATHEMATICAL REVIEWS

The Theory of Lattice-Ordered Groups

The Theory of Lattice-Ordered Groups
Title The Theory of Lattice-Ordered Groups PDF eBook
Author V.M. Kopytov
Publisher Springer Science & Business Media
Pages 408
Release 2013-03-09
Genre Mathematics
ISBN 9401583048

Download The Theory of Lattice-Ordered Groups Book in PDF, Epub and Kindle

A partially ordered group is an algebraic object having the structure of a group and the structure of a partially ordered set which are connected in some natural way. These connections were established in the period between the end of 19th and beginning of 20th century. It was realized that ordered algebraic systems occur in various branches of mathemat ics bound up with its fundamentals. For example, the classification of infinitesimals resulted in discovery of non-archimedean ordered al gebraic systems, the formalization of the notion of real number led to the definition of ordered groups and ordered fields, the construc tion of non-archimedean geometries brought about the investigation of non-archimedean ordered groups and fields. The theory of partially ordered groups was developed by: R. Dedekind, a. Holder, D. Gilbert, B. Neumann, A. I. Mal'cev, P. Hall, G. Birkhoff. These connections between partial order and group operations allow us to investigate the properties of partially ordered groups. For exam ple, partially ordered groups with interpolation property were intro duced in F. Riesz's fundamental paper [1] as a key to his investigations of partially ordered real vector spaces, and the study of ordered vector spaces with interpolation properties were continued by many functional analysts since. The deepest and most developed part of the theory of partially ordered groups is the theory of lattice-ordered groups. In the 40s, following the publications of the works by G. Birkhoff, H. Nakano and P.

Lattice-Ordered Groups

Lattice-Ordered Groups
Title Lattice-Ordered Groups PDF eBook
Author M.E Anderson
Publisher Springer Science & Business Media
Pages 197
Release 2012-12-06
Genre Computers
ISBN 9400928718

Download Lattice-Ordered Groups Book in PDF, Epub and Kindle

The study of groups equipped with a compatible lattice order ("lattice-ordered groups" or "I!-groups") has arisen in a number of different contexts. Examples of this include the study of ideals and divisibility, dating back to the work of Dedekind and continued by Krull; the pioneering work of Hahn on totally ordered abelian groups; and the work of Kantorovich and other analysts on partially ordered function spaces. After the Second World War, the theory of lattice-ordered groups became a subject of study in its own right, following the publication of fundamental papers by Birkhoff, Nakano and Lorenzen. The theory blossomed under the leadership of Paul Conrad, whose important papers in the 1960s provided the tools for describing the structure for many classes of I!-groups in terms of their convex I!-subgroups. A particularly significant success of this approach was the generalization of Hahn's embedding theorem to the case of abelian lattice-ordered groups, work done with his students John Harvey and Charles Holland. The results of this period are summarized in Conrad's "blue notes" [C].