Large-Scale Inference

Large-Scale Inference
Title Large-Scale Inference PDF eBook
Author Bradley Efron
Publisher Cambridge University Press
Pages
Release 2012-11-29
Genre Mathematics
ISBN 1139492136

Download Large-Scale Inference Book in PDF, Epub and Kindle

We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.

Large-Scale Inference

Large-Scale Inference
Title Large-Scale Inference PDF eBook
Author Bradley Efron
Publisher
Pages 276
Release 2010
Genre
ISBN

Download Large-Scale Inference Book in PDF, Epub and Kindle

We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once is more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples.

Computer Age Statistical Inference, Student Edition

Computer Age Statistical Inference, Student Edition
Title Computer Age Statistical Inference, Student Edition PDF eBook
Author Bradley Efron
Publisher Cambridge University Press
Pages 514
Release 2021-06-17
Genre Mathematics
ISBN 1108915876

Download Computer Age Statistical Inference, Student Edition Book in PDF, Epub and Kindle

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and influence. 'Data science' and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? How does it all fit together? Now in paperback and fortified with exercises, this book delivers a concentrated course in modern statistical thinking. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov Chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. Each chapter ends with class-tested exercises, and the book concludes with speculation on the future direction of statistics and data science.

Computer Age Statistical Inference

Computer Age Statistical Inference
Title Computer Age Statistical Inference PDF eBook
Author Bradley Efron
Publisher Cambridge University Press
Pages 496
Release 2016-07-21
Genre Mathematics
ISBN 1108107958

Download Computer Age Statistical Inference Book in PDF, Epub and Kindle

The twenty-first century has seen a breathtaking expansion of statistical methodology, both in scope and in influence. 'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

Statistical Inference as Severe Testing

Statistical Inference as Severe Testing
Title Statistical Inference as Severe Testing PDF eBook
Author Deborah G. Mayo
Publisher Cambridge University Press
Pages 503
Release 2018-09-20
Genre Mathematics
ISBN 1108563309

Download Statistical Inference as Severe Testing Book in PDF, Epub and Kindle

Mounting failures of replication in social and biological sciences give a new urgency to critically appraising proposed reforms. This book pulls back the cover on disagreements between experts charged with restoring integrity to science. It denies two pervasive views of the role of probability in inference: to assign degrees of belief, and to control error rates in a long run. If statistical consumers are unaware of assumptions behind rival evidence reforms, they can't scrutinize the consequences that affect them (in personalized medicine, psychology, etc.). The book sets sail with a simple tool: if little has been done to rule out flaws in inferring a claim, then it has not passed a severe test. Many methods advocated by data experts do not stand up to severe scrutiny and are in tension with successful strategies for blocking or accounting for cherry picking and selective reporting. Through a series of excursions and exhibits, the philosophy and history of inductive inference come alive. Philosophical tools are put to work to solve problems about science and pseudoscience, induction and falsification.

Graphical Models, Exponential Families, and Variational Inference

Graphical Models, Exponential Families, and Variational Inference
Title Graphical Models, Exponential Families, and Variational Inference PDF eBook
Author Martin J. Wainwright
Publisher Now Publishers Inc
Pages 324
Release 2008
Genre Computers
ISBN 1601981848

Download Graphical Models, Exponential Families, and Variational Inference Book in PDF, Epub and Kindle

The core of this paper is a general set of variational principles for the problems of computing marginal probabilities and modes, applicable to multivariate statistical models in the exponential family.

Large-Scale Inverse Problems and Quantification of Uncertainty

Large-Scale Inverse Problems and Quantification of Uncertainty
Title Large-Scale Inverse Problems and Quantification of Uncertainty PDF eBook
Author Lorenz Biegler
Publisher John Wiley & Sons
Pages 403
Release 2011-06-24
Genre Mathematics
ISBN 1119957583

Download Large-Scale Inverse Problems and Quantification of Uncertainty Book in PDF, Epub and Kindle

This book focuses on computational methods for large-scale statistical inverse problems and provides an introduction to statistical Bayesian and frequentist methodologies. Recent research advances for approximation methods are discussed, along with Kalman filtering methods and optimization-based approaches to solving inverse problems. The aim is to cross-fertilize the perspectives of researchers in the areas of data assimilation, statistics, large-scale optimization, applied and computational mathematics, high performance computing, and cutting-edge applications. The solution to large-scale inverse problems critically depends on methods to reduce computational cost. Recent research approaches tackle this challenge in a variety of different ways. Many of the computational frameworks highlighted in this book build upon state-of-the-art methods for simulation of the forward problem, such as, fast Partial Differential Equation (PDE) solvers, reduced-order models and emulators of the forward problem, stochastic spectral approximations, and ensemble-based approximations, as well as exploiting the machinery for large-scale deterministic optimization through adjoint and other sensitivity analysis methods. Key Features: Brings together the perspectives of researchers in areas of inverse problems and data assimilation. Assesses the current state-of-the-art and identify needs and opportunities for future research. Focuses on the computational methods used to analyze and simulate inverse problems. Written by leading experts of inverse problems and uncertainty quantification. Graduate students and researchers working in statistics, mathematics and engineering will benefit from this book.