Machine Learning with PyTorch and Scikit-Learn
Title | Machine Learning with PyTorch and Scikit-Learn PDF eBook |
Author | Sebastian Raschka |
Publisher | Packt Publishing Ltd |
Pages | 775 |
Release | 2022-02-25 |
Genre | Computers |
ISBN | 1801816387 |
This book of the bestselling and widely acclaimed Python Machine Learning series is a comprehensive guide to machine and deep learning using PyTorch s simple to code framework. Purchase of the print or Kindle book includes a free eBook in PDF format. Key Features Learn applied machine learning with a solid foundation in theory Clear, intuitive explanations take you deep into the theory and practice of Python machine learning Fully updated and expanded to cover PyTorch, transformers, XGBoost, graph neural networks, and best practices Book DescriptionMachine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.What you will learn Explore frameworks, models, and techniques for machines to learn from data Use scikit-learn for machine learning and PyTorch for deep learning Train machine learning classifiers on images, text, and more Build and train neural networks, transformers, and boosting algorithms Discover best practices for evaluating and tuning models Predict continuous target outcomes using regression analysis Dig deeper into textual and social media data using sentiment analysis Who this book is for If you have a good grasp of Python basics and want to start learning about machine learning and deep learning, then this is the book for you. This is an essential resource written for developers and data scientists who want to create practical machine learning and deep learning applications using scikit-learn and PyTorch. Before you get started with this book, you’ll need a good understanding of calculus, as well as linear algebra.
Large Language Models ( LLMs)
Title | Large Language Models ( LLMs) PDF eBook |
Author | Maria Johnsen |
Publisher | Maria Johnsen |
Pages | 451 |
Release | 2024-06-15 |
Genre | Computers |
ISBN |
This book offers an in-depth exploration of the world of Artificial Intelligence (AI) and Natural Language Processing (NLP), with a special focus on Large Language Models (LLMs). It is designed with academics in mind, making it a perfect resource for students and researchers. Starting with a foundational introduction to AI and its subfields, the book traces the evolution of NLP from rule-based systems to advanced neural networks. It explains the core concepts and architecture of neural networks, highlighting the transformative impact of transformers and attention mechanisms—crucial components for understanding how LLMs process natural language. Detailed explanations of encoder-decoder structures, positional encoding, and various types of neural networks provide a solid technical grounding. A significant portion of the book is dedicated to the practical aspects of working with LLMs. It covers data collection and preprocessing techniques, training objectives, optimization algorithms, and methods for scaling up models. The transition from GPT-2 to GPT-4 is used as a case study to illustrate the computational challenges and advancements in the field. The applications of LLMs are explored across various industries, showcasing their impact on customer service, content creation, journalism, healthcare, and education. Additionally, the book delves into the integration of text with other modalities in multimodal models and the capabilities of zero-shot and few-shot learning. Ethical considerations are a key focus, with discussions on understanding and mitigating bias in LLMs, ensuring responsible AI use, and addressing regulatory and legal implications. The future of LLMs is also contemplated, with predictions for emerging trends and technologies. To provide practical guidance, the book includes chapters on setting up the environment, building and optimizing simple language models, and deploying LLMs in production. It concludes with recommendations for further reading and resources, encouraging continuous learning in this rapidly evolving field. "Large Language Models (LLM)" is a comprehensive resource for anyone interested in understanding, developing, and applying LLMs, from beginners to advanced practitioners. Students are encouraged to buy this book to deepen their knowledge and enhance their academic pursuits.
Application of Large Language Models (LLMs) for Software Vulnerability Detection
Title | Application of Large Language Models (LLMs) for Software Vulnerability Detection PDF eBook |
Author | Omar, Marwan |
Publisher | IGI Global |
Pages | 534 |
Release | 2024-11-01 |
Genre | Computers |
ISBN |
Large Language Models (LLMs) are redefining the landscape of cybersecurity, offering innovative methods for detecting software vulnerabilities. By applying advanced AI techniques to identify and predict weaknesses in software code, including zero-day exploits and complex malware, LLMs provide a proactive approach to securing digital environments. This integration of AI and cybersecurity presents new possibilities for enhancing software security measures. Application of Large Language Models (LLMs) for Software Vulnerability Detection offers a comprehensive exploration of this groundbreaking field. These chapters are designed to bridge the gap between AI research and practical application in cybersecurity, in order to provide valuable insights for researchers, AI specialists, software developers, and industry professionals. Through real-world examples and actionable strategies, the publication will drive innovation in vulnerability detection and set new standards for leveraging AI in cybersecurity.
Large Language Models
Title | Large Language Models PDF eBook |
Author | Jagdish Krishanlal Arora |
Publisher | Jagdish Krishanlal Arora |
Pages | 71 |
Release | 2024-03-28 |
Genre | Computers |
ISBN |
Journey into the World of Advanced AI: From Concept to Reality Step into a realm where artificial intelligence isn't just a concept but a transformative force reshaping our world. Whether you're a tech enthusiast, a researcher, or an AI newcomer, this captivating exploration will draw you into the revolutionary domain of Large Language Models (LLMs). Imagine a future where machines understand and generate human-like text, answering questions, creating content, and assisting in ways once dreamt of only in science fiction. This isn't the future; it's now. The evolution of LLMs from early language models to sophisticated transformers like the GPT series by OpenAI is a story of relentless innovation and boundless potential. With insightful chapters that dissect the trajectory of LLMs, you'll uncover the intricate journey starting from early algorithms to the groundbreaking GPT series. Discover the multifaceted applications of LLMs across various industries, their remarkable benefits, and the challenges that researchers and developers face in quest of creating even more advanced systems. Dive into the specifics of language model evolution, from Word2Vec to the marvels of modern-day GPT. Learn how LLMs are revolutionizing fields such as customer service, content creation, and even complex problem-solving. Their ability to process and generate human-like language opens doors to innovations beyond our wildest dreams. This book isn't just a technical manual; it's a glimpse into the dynamic world of AI, offering a balanced view of the excitement and challenges that accompany such groundbreaking technology. Ready to be part of the journey that transforms how we interact with technology? This book will ignite your curiosity and broaden your understanding of the powerful engines driving the AI revolution.
Large Language Models Agents Handbook
Title | Large Language Models Agents Handbook PDF eBook |
Author | Anand Vemula |
Publisher | Anand Vemula |
Pages | 40 |
Release | |
Genre | Computers |
ISBN |
The "Large Language Models Agent's Handbook" serves as a comprehensive guide for utilizing large language models (LLMs) effectively. These models, such as GPT-3, have revolutionized natural language processing and are invaluable tools in various fields, including research, business, and creative endeavors. The handbook begins by elucidating the fundamental principles underlying LLMs, explaining their architecture, training process, and capabilities. It delves into the importance of data quality, model fine-tuning, and ethical considerations in deploying LLMs responsibly. Understanding the applications of LLMs is crucial, and the handbook provides detailed insights into their diverse uses. From generating text and code to aiding in decision-making processes, LLMs can augment human capabilities across industries. Case studies showcase real-world examples, illustrating how LLMs have been leveraged for tasks such as content creation, customer service automation, and scientific research. Ethical guidelines are paramount when employing LLMs, and the handbook emphasizes the ethical implications of LLM usage. Issues such as bias, misinformation, and privacy concerns are addressed, alongside strategies for mitigating these risks. Responsible AI practices, including transparency, fairness, and accountability, are advocated throughout. Practical considerations for working with LLMs are explored in detail, covering topics such as model selection, data preprocessing, and performance evaluation. Tips for optimizing model performance and troubleshooting common challenges are provided, empowering users to navigate the complexities of LLM implementation effectively. As LLMs continue to evolve, staying updated with the latest advancements and best practices is essential. The handbook offers resources for ongoing learning, including research papers, online communities, and development tools. Additionally, it encourages collaboration and knowledge sharing among LLM practitioners to foster innovation and collective growth. In conclusion, the "Large Language Models Agent's Handbook" equips readers with the knowledge and tools needed to harness the full potential of LLMs responsibly and effectively. By embracing ethical principles, staying informed about emerging trends, and leveraging practical strategies, agents can leverage LLMs to tackle complex challenges and drive meaningful progress in their respective domains
Demystifying Large Language Models
Title | Demystifying Large Language Models PDF eBook |
Author | James Chen |
Publisher | James Chen |
Pages | 300 |
Release | 2024-04-25 |
Genre | Computers |
ISBN | 1738908461 |
This book is a comprehensive guide aiming to demystify the world of transformers -- the architecture that powers Large Language Models (LLMs) like GPT and BERT. From PyTorch basics and mathematical foundations to implementing a Transformer from scratch, you'll gain a deep understanding of the inner workings of these models. That's just the beginning. Get ready to dive into the realm of pre-training your own Transformer from scratch, unlocking the power of transfer learning to fine-tune LLMs for your specific use cases, exploring advanced techniques like PEFT (Prompting for Efficient Fine-Tuning) and LoRA (Low-Rank Adaptation) for fine-tuning, as well as RLHF (Reinforcement Learning with Human Feedback) for detoxifying LLMs to make them aligned with human values and ethical norms. Step into the deployment of LLMs, delivering these state-of-the-art language models into the real-world, whether integrating them into cloud platforms or optimizing them for edge devices, this section ensures you're equipped with the know-how to bring your AI solutions to life. Whether you're a seasoned AI practitioner, a data scientist, or a curious developer eager to advance your knowledge on the powerful LLMs, this book is your ultimate guide to mastering these cutting-edge models. By translating convoluted concepts into understandable explanations and offering a practical hands-on approach, this treasure trove of knowledge is invaluable to both aspiring beginners and seasoned professionals. Table of Contents 1. INTRODUCTION 1.1 What is AI, ML, DL, Generative AI and Large Language Model 1.2 Lifecycle of Large Language Models 1.3 Whom This Book Is For 1.4 How This Book Is Organized 1.5 Source Code and Resources 2. PYTORCH BASICS AND MATH FUNDAMENTALS 2.1 Tensor and Vector 2.2 Tensor and Matrix 2.3 Dot Product 2.4 Softmax 2.5 Cross Entropy 2.6 GPU Support 2.7 Linear Transformation 2.8 Embedding 2.9 Neural Network 2.10 Bigram and N-gram Models 2.11 Greedy, Random Sampling and Beam 2.12 Rank of Matrices 2.13 Singular Value Decomposition (SVD) 2.14 Conclusion 3. TRANSFORMER 3.1 Dataset and Tokenization 3.2 Embedding 3.3 Positional Encoding 3.4 Layer Normalization 3.5 Feed Forward 3.6 Scaled Dot-Product Attention 3.7 Mask 3.8 Multi-Head Attention 3.9 Encoder Layer and Encoder 3.10 Decoder Layer and Decoder 3.11 Transformer 3.12 Training 3.13 Inference 3.14 Conclusion 4. PRE-TRAINING 4.1 Machine Translation 4.2 Dataset and Tokenization 4.3 Load Data in Batch 4.4 Pre-Training nn.Transformer Model 4.5 Inference 4.6 Popular Large Language Models 4.7 Computational Resources 4.8 Prompt Engineering and In-context Learning (ICL) 4.9 Prompt Engineering on FLAN-T5 4.10 Pipelines 4.11 Conclusion 5. FINE-TUNING 5.1 Fine-Tuning 5.2 Parameter Efficient Fine-tuning (PEFT) 5.3 Low-Rank Adaptation (LoRA) 5.4 Adapter 5.5 Prompt Tuning 5.6 Evaluation 5.7 Reinforcement Learning 5.8 Reinforcement Learning Human Feedback (RLHF) 5.9 Implementation of RLHF 5.10 Conclusion 6. DEPLOYMENT OF LLMS 6.1 Challenges and Considerations 6.2 Pre-Deployment Optimization 6.3 Security and Privacy 6.4 Deployment Architectures 6.5 Scalability and Load Balancing 6.6 Compliance and Ethics Review 6.7 Model Versioning and Updates 6.8 LLM-Powered Applications 6.9 Vector Database 6.10 LangChain 6.11 Chatbot, Example of LLM-Powered Application 6.12 WebUI, Example of LLM-Power Application 6.13 Future Trends and Challenges 6.14 Conclusion REFERENCES ABOUT THE AUTHOR
Challenges in Large Language Model Development and AI Ethics
Title | Challenges in Large Language Model Development and AI Ethics PDF eBook |
Author | Gupta, Brij |
Publisher | IGI Global |
Pages | 521 |
Release | 2024-08-15 |
Genre | Computers |
ISBN |
The development of large language models has resulted in artificial intelligence advancements promising transformations and benefits across various industries and sectors. However, this progress is not without its challenges. The scale and complexity of these models pose significant technical hurdles, including issues related to bias, transparency, and data privacy. As these models integrate into decision-making processes, ethical concerns about their societal impact, such as potential job displacement or harmful stereotype reinforcement, become more urgent. Addressing these challenges requires a collaborative effort from business owners, computer engineers, policymakers, and sociologists. Fostering effective research for solutions to address AI ethical challenges may ensure that large language model developments benefit society in a positive way. Challenges in Large Language Model Development and AI Ethics addresses complex ethical dilemmas and challenges of the development of large language models and artificial intelligence. It analyzes ethical considerations involved in the design and implementation of large language models, while exploring aspects like bias, accountability, privacy, and social impacts. This book covers topics such as law and policy, model architecture, and machine learning, and is a useful resource for computer engineers, sociologists, policymakers, business owners, academicians, researchers, and scientists.