Large Igneous Provinces from Gondwana and Adjacent Regions

Large Igneous Provinces from Gondwana and Adjacent Regions
Title Large Igneous Provinces from Gondwana and Adjacent Regions PDF eBook
Author S. Sensarma
Publisher Geological Society of London
Pages 283
Release 2018-02-19
Genre Science
ISBN 1786203251

Download Large Igneous Provinces from Gondwana and Adjacent Regions Book in PDF, Epub and Kindle

Gondwana, comprising more than 64% of the present day continental mass, is home to 33% of large igneous provinces (LIPs) and key to understanding the lithosphere–atmosphere system and related tectonics that influenced global climate and sediment production on Earth. Gondwana has many of the largest LIPs, with areas of 200 000 to 2 000 000 km2. Several Gondwana LIPs erupted near active continental margins as well as within continents. The rifting of continents continued even after LIP emplacement or was aborted by a coeval compression and did not open into an ocean. Important contemporary frontiers include understanding significant amounts of synchronous silicic volcanic rocks in mafic LIPs, bringing better stratigraphic constraints supported by precise age dating and volume estimation of LIPs, the possible link between LIP emplacement and biotic crisis, refinement of the existing petrogenetic models and assessing large eruptions and associated societal risk. This volume covers topics on magma emplacements, petrology and geochemistry, source characteristics, flood basalt–carbonatite linkage, tectonics and geochronology of LIPs distributed in Gondwana continents.

Magmatism in the McMurdo Dry Valleys, Antarctica

Magmatism in the McMurdo Dry Valleys, Antarctica
Title Magmatism in the McMurdo Dry Valleys, Antarctica PDF eBook
Author Bruce Marsh
Publisher Cambridge University Press
Pages 291
Release 2023-01-31
Genre Science
ISBN 1009188518

Download Magmatism in the McMurdo Dry Valleys, Antarctica Book in PDF, Epub and Kindle

The mechanisms of magma movement, chemical differentiation and physical development, are derived from the geochemistry of igneous rocks, and from studying exposures of deep magmatic systems that have since solidified and been uplifted and exposed at the Earth's surface. The Ferrar Magmatic System of the McMurdo Dry Valleys in Antarctica provides an unparalleled example of a complete magmatic-volcanic system exposed in unprecedented detail. This book provides a unique and usual three-dimensional detailed examination of this system, providing insight into many magmatic processes normally unobservable, in particular how basaltic magma moves upwards through the crust, how it entrains, carries and deposits loads of crystals from great depths, and how this all contributes to Earth's evolution. Providing an explanation of how magmatic systems operate and how igneous rocks form, this is an invaluable resource ideal for researchers and graduate students in magma physics, igneous petrology, volcanology, and geochemistry.

A Photographic Atlas of Flood Basalt Volcanism

A Photographic Atlas of Flood Basalt Volcanism
Title A Photographic Atlas of Flood Basalt Volcanism PDF eBook
Author Hetu Sheth
Publisher Springer
Pages 373
Release 2017-11-25
Genre Science
ISBN 3319677055

Download A Photographic Atlas of Flood Basalt Volcanism Book in PDF, Epub and Kindle

This unique book presents hundreds of spectacular photographs of large-scale to small-scale field geological features of flood basalt volcanism from around the world. Major flood basalt provinces covered in this book include the British Palaeogene, Central Atlantic Magmatic Province, Columbia River, Deccan, East Greenland, Emeishan, Ethiopian, Ferrar-Karoo-Tasmania, Iceland, Indo-Madagascar, Paraná, Siberian, West Greenland, and others. Intermediate- to small-sized flood basalts (such as Saudi Arabia and South Caucasus) are also included. Different chapters of the book illustrate varied features of flood basalts, including landscapes, lava flow morphology and stacking, structures formed during lava flow transport, inflation and degassing, structures produced during lava solidification, subaqueous volcanism and volcanosedimentary associations, explosive volcanism, intrusions, igneous processes and magmatic diversity, tectonic deformation, secondary mineralization, and weathering and erosion. This book will be valuable for a large audience: specialists studying flood basalt volcanology, petrology, geochemistry, geochronology, geophysics, and environmental impact and mass extinction links; nonspecialists who want to know more about flood basalts; field geologists (such as those working in geological surveys); students of volcanology and igneous petrology, and even people employed in the industry, such as those working on flood basalt-hosted groundwater or petroleum reservoirs.

Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up

Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up
Title Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up PDF eBook
Author J.L. Smellie
Publisher Geological Society of London
Pages 802
Release 2021-06-09
Genre Science
ISBN 178620536X

Download Volcanism in Antarctica: 200 Million Years of Subduction, Rifting and Continental Break-up Book in PDF, Epub and Kindle

This memoir is the first to review all of Antarctica’s volcanism between 200 million years ago and the Present. The region is still volcanically active. The volume is an amalgamation of in-depth syntheses, which are presented within distinctly different tectonic settings. Each is described in terms of (1) the volcanology and eruptive palaeoenvironments; (2) petrology and origin of magma; and (3) active volcanism, including tephrochronology. Important volcanic episodes include: astonishingly voluminous mafic and felsic volcanic deposits associated with the Jurassic break-up of Gondwana; the construction and progressive demise of a major Jurassic to Present continental arc, including back-arc alkaline basalts and volcanism in a young ensialic marginal basin; Miocene to Pleistocene mafic volcanism associated with post-subduction slab-window formation; numerous Neogene alkaline volcanoes, including the massive Erebus volcano and its persistent phonolitic lava lake, that are widely distributed within and adjacent to one of the world’s major zones of lithospheric extension (the West Antarctic Rift System); and very young ultrapotassic volcanism erupted subglacially and forming a world-wide type example (Gaussberg).

250 Million Years of Earth History in Central Italy

250 Million Years of Earth History in Central Italy
Title 250 Million Years of Earth History in Central Italy PDF eBook
Author Christian Koeberl
Publisher Geological Society of America
Pages 554
Release 2019-11-04
Genre Science
ISBN 0813725429

Download 250 Million Years of Earth History in Central Italy Book in PDF, Epub and Kindle

"The Umbria-Marche Apennines are entirely made of marine sedimentary rocks, representing a continuous record of the geotectonic evolution of an epeiric sea from the Early Triassic to the Pleistocene. The book includes reviews and original research works accomplished with the support of the Geological Observatory of Coldigioco"--

Large Igneous Provinces

Large Igneous Provinces
Title Large Igneous Provinces PDF eBook
Author Richard E. Ernst
Publisher John Wiley & Sons
Pages 532
Release 2021-02-09
Genre Science
ISBN 1119507456

Download Large Igneous Provinces Book in PDF, Epub and Kindle

This book is Open Access. A digital copy can be downloaded for free from Wiley Online Library. Exploring the links between Large Igneous Provinces and dramatic environmental impact An emerging consensus suggests that Large Igneous Provinces (LIPs) and Silicic LIPs (SLIPs) are a significant driver of dramatic global environmental and biological changes, including mass extinctions. Environmental changes caused by LIPs and SLIPs include rapid global warming, global cooling ('Snowball Earth'), oceanic anoxia events, mercury poisoning, atmospheric and oceanic acidification, and sea level changes. Continued research to characterize the effects of these extremely large and typically short duration igneous events on atmospheric and oceanic chemistry through Earth history can provide lessons for understanding and mitigating modern climate change. Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes describes the interactions between the effects of LIPs and other drivers of climatic change, the limits of the LIP effect, and the atmospheric and oceanic consequences of LIPs in significant environmental events. Volume highlights include: Temporal record of large igneous provinces (LIPs) Environmental impacts of LIP emplacement Precambrian, Proterozoic, and Phanerozoic case histories Links between geochemical proxies and the LIP record Alternative causes for environmental change Key parameters related to LIPs and SLIPs for use in environmental change modelling Role of LIPs in Permo-Triassic, Triassic-Jurassic, and other mass extinction events The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals.

Tectonics of the Indian Subcontinent

Tectonics of the Indian Subcontinent
Title Tectonics of the Indian Subcontinent PDF eBook
Author A.K. Jain
Publisher Springer Nature
Pages 594
Release 2020-04-07
Genre Science
ISBN 3030428451

Download Tectonics of the Indian Subcontinent Book in PDF, Epub and Kindle

This books documents the salient characters of the tectonic evolution of the Indian subcontinent. It showcases the well investigated subcontinent of Gondwana. The book is linked to an updated geological and tectonic map of this region on 1:12,000,000 in scale. The Indian subcontinent displays almost uninterrupted and unique the geological history since about Eo-Archean (~3800 Ma) to recent, with the development of many Proterozoic deformed and metamorphosed fold belts around Archean nuclei, and enormously thick undeformed platform deposits. After their stabilization during late Proterozoic, the subcontinent underwent Paleozoic rifting and deposition of coal-bearing thick sequences, followed by enormously-thick outpouring of Deccan volcanics as a consequence of huge mantle plume. The youngest event in its evolution is the Cenozoic Himalayan Orogenic Mountains, spanning the area between Nanga Parbat and Namcha Barwah; a part of which extends both in Pakistan and Myanmar.