L2-Invariants: Theory and Applications to Geometry and K-Theory
Title | L2-Invariants: Theory and Applications to Geometry and K-Theory PDF eBook |
Author | Wolfgang Lück |
Publisher | Springer Science & Business Media |
Pages | 604 |
Release | 2013-03-09 |
Genre | Mathematics |
ISBN | 3662046873 |
In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.
Introduction to l2-invariants
Title | Introduction to l2-invariants PDF eBook |
Author | Holger Kammeyer |
Publisher | Springer Nature |
Pages | 190 |
Release | 2019-10-29 |
Genre | Mathematics |
ISBN | 303028297X |
This book introduces the reader to the most important concepts and problems in the field of l2-invariants. After some foundational material on group von Neumann algebras, l2-Betti numbers are defined and their use is illustrated by several examples. The text continues with Atiyah's question on possible values of l2-Betti numbers and the relation to Kaplansky's zero divisor conjecture. The general definition of l2-Betti numbers allows for applications in group theory. A whole chapter is dedicated to Lück's approximation theorem and its generalizations. The final chapter deals with l2-torsion, twisted variants and the conjectures relating them to torsion growth in homology. The text provides a self-contained treatment that constructs the required specialized concepts from scratch. It comes with numerous exercises and examples, so that both graduate students and researchers will find it useful for self-study or as a basis for an advanced lecture course.
L2-Invariants: Theory and Applications to Geometry and K-Theory
Title | L2-Invariants: Theory and Applications to Geometry and K-Theory PDF eBook |
Author | Wolfgang Lück |
Publisher | Springer Science & Business Media |
Pages | 624 |
Release | 2002-08-06 |
Genre | Mathematics |
ISBN | 9783540435662 |
In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.
Geometric and Cohomological Methods in Group Theory
Title | Geometric and Cohomological Methods in Group Theory PDF eBook |
Author | Martin R. Bridson |
Publisher | Cambridge University Press |
Pages | 331 |
Release | 2009-10-29 |
Genre | Mathematics |
ISBN | 052175724X |
An extended tour through a selection of the most important trends in modern geometric group theory.
Existence and Regularity Properties of the Integrated Density of States of Random Schrödinger Operators
Title | Existence and Regularity Properties of the Integrated Density of States of Random Schrödinger Operators PDF eBook |
Author | Ivan Veselic |
Publisher | Springer Science & Business Media |
Pages | 151 |
Release | 2008-01-02 |
Genre | Mathematics |
ISBN | 3540726896 |
This book describes in detail a quantity encoding spectral feature of random operators: the integrated density of states or spectral distribution function. It presents various approaches to the construction of the integrated density of states and the proof of its regularity properties. The book also includes references to and a discussion of other properties of the IDS as well as a variety of models beyond those treated in detail here.
The Mathematics of Knots
Title | The Mathematics of Knots PDF eBook |
Author | Markus Banagl |
Publisher | Springer Science & Business Media |
Pages | 363 |
Release | 2010-11-25 |
Genre | Mathematics |
ISBN | 3642156371 |
The present volume grew out of the Heidelberg Knot Theory Semester, organized by the editors in winter 2008/09 at Heidelberg University. The contributed papers bring the reader up to date on the currently most actively pursued areas of mathematical knot theory and its applications in mathematical physics and cell biology. Both original research and survey articles are presented; numerous illustrations support the text. The book will be of great interest to researchers in topology, geometry, and mathematical physics, graduate students specializing in knot theory, and cell biologists interested in the topology of DNA strands.
A Semidiscrete Version of the Citti-Petitot-Sarti Model as a Plausible Model for Anthropomorphic Image Reconstruction and Pattern Recognition
Title | A Semidiscrete Version of the Citti-Petitot-Sarti Model as a Plausible Model for Anthropomorphic Image Reconstruction and Pattern Recognition PDF eBook |
Author | Dario Prandi |
Publisher | Springer |
Pages | 121 |
Release | 2018-06-11 |
Genre | Mathematics |
ISBN | 331978482X |
This book proposes a semi-discrete version of the theory of Petitot and Citti-Sarti, leading to a left-invariant structure over the group SE(2,N), restricted to a finite number of rotations. This apparently very simple group is in fact quite atypical: it is maximally almost periodic, which leads to much simpler harmonic analysis compared to SE(2). Based upon this semi-discrete model, the authors improve on previous image-reconstruction algorithms and develop a pattern-recognition theory that also leads to very efficient algorithms in practice.