Kolmogorov in Perspective

Kolmogorov in Perspective
Title Kolmogorov in Perspective PDF eBook
Author
Publisher American Mathematical Soc.
Pages 242
Release 2000
Genre Mathematicians
ISBN 0821829181

Download Kolmogorov in Perspective Book in PDF, Epub and Kindle

The editorial board for the History of Mathematics series has selected for this volume a series of translations from two Russian publications, Kolmogorov in Remembrance and Mathematics and its Historical Development. This book, Kolmogorov in Perspective, includes articles written by Kolmogorov's students and colleagues and his personal accounts of shared experiences and lifelong mathematical friendships. The articles combine to give an excellent personal and scientific biography of this important mathematician. There is also an extensive bibliography with the complete list of Kolmogorov's work.

Kolmogorov's Heritage in Mathematics

Kolmogorov's Heritage in Mathematics
Title Kolmogorov's Heritage in Mathematics PDF eBook
Author Eric Charpentier
Publisher Springer Science & Business Media
Pages 326
Release 2007-09-13
Genre Mathematics
ISBN 3540363513

Download Kolmogorov's Heritage in Mathematics Book in PDF, Epub and Kindle

In this book, several world experts present (one part of) the mathematical heritage of Kolmogorov. Each chapter treats one of his research themes or a subject invented as a consequence of his discoveries. The authors present his contributions, his methods, the perspectives he opened to us, and the way in which this research has evolved up to now. Coverage also includes examples of recent applications and a presentation of the modern prospects.

Turbulence

Turbulence
Title Turbulence PDF eBook
Author Uriel Frisch
Publisher Cambridge University Press
Pages 318
Release 1995-11-30
Genre Science
ISBN 1139935976

Download Turbulence Book in PDF, Epub and Kindle

This textbook presents a modern account of turbulence, one of the greatest challenges in physics. The state-of-the-art is put into historical perspective five centuries after the first studies of Leonardo and half a century after the first attempt by A. N. Kolmogorov to predict the properties of flow at very high Reynolds numbers. Such 'fully developed turbulence' is ubiquitous in both cosmical and natural environments, in engineering applications and in everyday life. The intended readership for the book ranges from first-year graduate students in mathematics, physics, astrophysics, geosciences and engineering, to professional scientists and engineers. Elementary presentations of dynamical systems ideas, of probabilistic methods (including the theory of large deviations) and of fractal geometry make this a self-contained textbook.

An Introduction to Measure Theory

An Introduction to Measure Theory
Title An Introduction to Measure Theory PDF eBook
Author Terence Tao
Publisher American Mathematical Soc.
Pages 206
Release 2021-09-03
Genre Education
ISBN 1470466406

Download An Introduction to Measure Theory Book in PDF, Epub and Kindle

This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

Markov Processes from K. Itô's Perspective (AM-155)

Markov Processes from K. Itô's Perspective (AM-155)
Title Markov Processes from K. Itô's Perspective (AM-155) PDF eBook
Author Daniel W. Stroock
Publisher Princeton University Press
Pages 289
Release 2003-05-06
Genre Mathematics
ISBN 1400835577

Download Markov Processes from K. Itô's Perspective (AM-155) Book in PDF, Epub and Kindle

Kiyosi Itô's greatest contribution to probability theory may be his introduction of stochastic differential equations to explain the Kolmogorov-Feller theory of Markov processes. Starting with the geometric ideas that guided him, this book gives an account of Itô's program. The modern theory of Markov processes was initiated by A. N. Kolmogorov. However, Kolmogorov's approach was too analytic to reveal the probabilistic foundations on which it rests. In particular, it hides the central role played by the simplest Markov processes: those with independent, identically distributed increments. To remedy this defect, Itô interpreted Kolmogorov's famous forward equation as an equation that describes the integral curve of a vector field on the space of probability measures. Thus, in order to show how Itô's thinking leads to his theory of stochastic integral equations, Stroock begins with an account of integral curves on the space of probability measures and then arrives at stochastic integral equations when he moves to a pathspace setting. In the first half of the book, everything is done in the context of general independent increment processes and without explicit use of Itô's stochastic integral calculus. In the second half, the author provides a systematic development of Itô's theory of stochastic integration: first for Brownian motion and then for continuous martingales. The final chapter presents Stratonovich's variation on Itô's theme and ends with an application to the characterization of the paths on which a diffusion is supported. The book should be accessible to readers who have mastered the essentials of modern probability theory and should provide such readers with a reasonably thorough introduction to continuous-time, stochastic processes.

Vorticity and Turbulence

Vorticity and Turbulence
Title Vorticity and Turbulence PDF eBook
Author Alexandre J. Chorin
Publisher Springer Science & Business Media
Pages 181
Release 2013-12-01
Genre Mathematics
ISBN 1441987282

Download Vorticity and Turbulence Book in PDF, Epub and Kindle

This book provides an introduction to the theory of turbulence in fluids based on the representation of the flow by means of its vorticity field. It has long been understood that, at least in the case of incompressible flow, the vorticity representation is natural and physically transparent, yet the development of a theory of turbulence in this representation has been slow. The pioneering work of Onsager and of Joyce and Montgomery on the statistical mechanics of two-dimensional vortex systems has only recently been put on a firm mathematical footing, and the three-dimensional theory remains in parts speculative and even controversial. The first three chapters of the book contain a reasonably standard intro duction to homogeneous turbulence (the simplest case); a quick review of fluid mechanics is followed by a summary of the appropriate Fourier theory (more detailed than is customary in fluid mechanics) and by a summary of Kolmogorov's theory of the inertial range, slanted so as to dovetail with later vortex-based arguments. The possibility that the inertial spectrum is an equilibrium spectrum is raised.

Constructivity and Computability in Historical and Philosophical Perspective

Constructivity and Computability in Historical and Philosophical Perspective
Title Constructivity and Computability in Historical and Philosophical Perspective PDF eBook
Author Jacques Dubucs
Publisher Springer
Pages 223
Release 2014-08-27
Genre Philosophy
ISBN 9401792178

Download Constructivity and Computability in Historical and Philosophical Perspective Book in PDF, Epub and Kindle

Ranging from Alan Turing’s seminal 1936 paper to the latest work on Kolmogorov complexity and linear logic, this comprehensive new work clarifies the relationship between computability on the one hand and constructivity on the other. The authors argue that even though constructivists have largely shed Brouwer’s solipsistic attitude to logic, there remain points of disagreement to this day. Focusing on the growing pains computability experienced as it was forced to address the demands of rapidly expanding applications, the content maps the developments following Turing’s ground-breaking linkage of computation and the machine, the resulting birth of complexity theory, the innovations of Kolmogorov complexity and resolving the dissonances between proof theoretical semantics and canonical proof feasibility. Finally, it explores one of the most fundamental questions concerning the interface between constructivity and computability: whether the theory of recursive functions is needed for a rigorous development of constructive mathematics. This volume contributes to the unity of science by overcoming disunities rather than offering an overarching framework. It posits that computability’s adoption of a classical, ontological point of view kept these imperatives separated. In studying the relationship between the two, it is a vital step forward in overcoming the disagreements and misunderstandings which stand in the way of a unifying view of logic.