Knowledge Representation and Reasoning

Knowledge Representation and Reasoning
Title Knowledge Representation and Reasoning PDF eBook
Author Ronald Brachman
Publisher Morgan Kaufmann
Pages 414
Release 2004-05-19
Genre Computers
ISBN 1558609326

Download Knowledge Representation and Reasoning Book in PDF, Epub and Kindle

Knowledge representation is at the very core of a radical idea for understanding intelligence. This book talks about the central concepts of knowledge representation developed over the years. It is suitable for researchers and practitioners in database management, information retrieval, object-oriented systems and artificial intelligence.

Knowledge Representation, Reasoning, and the Design of Intelligent Agents

Knowledge Representation, Reasoning, and the Design of Intelligent Agents
Title Knowledge Representation, Reasoning, and the Design of Intelligent Agents PDF eBook
Author Michael Gelfond
Publisher Cambridge University Press
Pages 363
Release 2014-03-10
Genre Computers
ISBN 1107782872

Download Knowledge Representation, Reasoning, and the Design of Intelligent Agents Book in PDF, Epub and Kindle

Knowledge representation and reasoning is the foundation of artificial intelligence, declarative programming, and the design of knowledge-intensive software systems capable of performing intelligent tasks. Using logical and probabilistic formalisms based on answer set programming (ASP) and action languages, this book shows how knowledge-intensive systems can be given knowledge about the world and how it can be used to solve non-trivial computational problems. The authors maintain a balance between mathematical analysis and practical design of intelligent agents. All the concepts, such as answering queries, planning, diagnostics, and probabilistic reasoning, are illustrated by programs of ASP. The text can be used for AI-related undergraduate and graduate classes and by researchers who would like to learn more about ASP and knowledge representation.

Knowledge Representation, Reasoning and Declarative Problem Solving

Knowledge Representation, Reasoning and Declarative Problem Solving
Title Knowledge Representation, Reasoning and Declarative Problem Solving PDF eBook
Author Chitta Baral
Publisher Cambridge University Press
Pages 546
Release 2003-01-09
Genre Computers
ISBN 1139436449

Download Knowledge Representation, Reasoning and Declarative Problem Solving Book in PDF, Epub and Kindle

Baral shows how to write programs that behave intelligently, by giving them the ability to express knowledge and to reason. This book will appeal to practising and would-be knowledge engineers wishing to learn more about the subject in courses or through self-teaching.

Graph-based Knowledge Representation

Graph-based Knowledge Representation
Title Graph-based Knowledge Representation PDF eBook
Author Michel Chein
Publisher Springer Science & Business Media
Pages 428
Release 2008-10-20
Genre Mathematics
ISBN 1848002866

Download Graph-based Knowledge Representation Book in PDF, Epub and Kindle

This book provides a de?nition and study of a knowledge representation and r- soning formalism stemming from conceptual graphs, while focusing on the com- tational properties of this formalism. Knowledge can be symbolically represented in many ways. The knowledge representation and reasoning formalism presented here is a graph formalism – knowledge is represented by labeled graphs, in the graph theory sense, and r- soning mechanisms are based on graph operations, with graph homomorphism at the core. This formalism can thus be considered as related to semantic networks. Since their conception, semantic networks have faded out several times, but have always returned to the limelight. They faded mainly due to a lack of formal semantics and the limited reasoning tools proposed. They have, however, always rebounded - cause labeled graphs, schemas and drawings provide an intuitive and easily und- standable support to represent knowledge. This formalism has the visual qualities of any graphic model, and it is logically founded. This is a key feature because logics has been the foundation for knowledge representation and reasoning for millennia. The authors also focus substantially on computational facets of the presented formalism as they are interested in knowledge representation and reasoning formalisms upon which knowledge-based systems can be built to solve real problems. Since object structures are graphs, naturally graph homomorphism is the key underlying notion and, from a computational viewpoint, this moors calculus to combinatorics and to computer science domains in which the algorithmicqualitiesofgraphshavelongbeenstudied,asindatabasesandconstraint networks.

Principles of Knowledge Representation and Reasoning

Principles of Knowledge Representation and Reasoning
Title Principles of Knowledge Representation and Reasoning PDF eBook
Author Jon Doyle
Publisher Morgan Kaufmann
Pages 680
Release 1994
Genre Computers
ISBN

Download Principles of Knowledge Representation and Reasoning Book in PDF, Epub and Kindle

The proceedings of KR '94 comprise 55 papers on topics including deduction an search, description logics, theories of knowledge and belief, nonmonotonic reasoning and belief revision, action and time, planning and decision-making and reasoning about the physical world, and the relations between KR

Reasoning About Knowledge

Reasoning About Knowledge
Title Reasoning About Knowledge PDF eBook
Author Ronald Fagin
Publisher MIT Press
Pages 576
Release 2004-01-09
Genre Business & Economics
ISBN 9780262562003

Download Reasoning About Knowledge Book in PDF, Epub and Kindle

Reasoning about knowledge—particularly the knowledge of agents who reason about the world and each other's knowledge—was once the exclusive province of philosophers and puzzle solvers. More recently, this type of reasoning has been shown to play a key role in a surprising number of contexts, from understanding conversations to the analysis of distributed computer algorithms. Reasoning About Knowledge is the first book to provide a general discussion of approaches to reasoning about knowledge and its applications to distributed systems, artificial intelligence, and game theory. It brings eight years of work by the authors into a cohesive framework for understanding and analyzing reasoning about knowledge that is intuitive, mathematically well founded, useful in practice, and widely applicable. The book is almost completely self-contained and should be accessible to readers in a variety of disciplines, including computer science, artificial intelligence, linguistics, philosophy, cognitive science, and game theory. Each chapter includes exercises and bibliographic notes.

Handbook of Knowledge Representation

Handbook of Knowledge Representation
Title Handbook of Knowledge Representation PDF eBook
Author Frank van Harmelen
Publisher Elsevier
Pages 1035
Release 2008-01-08
Genre Computers
ISBN 0080557023

Download Handbook of Knowledge Representation Book in PDF, Epub and Kindle

Handbook of Knowledge Representation describes the essential foundations of Knowledge Representation, which lies at the core of Artificial Intelligence (AI). The book provides an up-to-date review of twenty-five key topics in knowledge representation, written by the leaders of each field. It includes a tutorial background and cutting-edge developments, as well as applications of Knowledge Representation in a variety of AI systems. This handbook is organized into three parts. Part I deals with general methods in Knowledge Representation and reasoning and covers such topics as classical logic in Knowledge Representation; satisfiability solvers; description logics; constraint programming; conceptual graphs; nonmonotonic reasoning; model-based problem solving; and Bayesian networks. Part II focuses on classes of knowledge and specialized representations, with chapters on temporal representation and reasoning; spatial and physical reasoning; reasoning about knowledge and belief; temporal action logics; and nonmonotonic causal logic. Part III discusses Knowledge Representation in applications such as question answering; the semantic web; automated planning; cognitive robotics; multi-agent systems; and knowledge engineering. This book is an essential resource for graduate students, researchers, and practitioners in knowledge representation and AI. * Make your computer smarter* Handle qualitative and uncertain information* Improve computational tractability to solve your problems easily