Quantum Invariants of Knots and 3-Manifolds

Quantum Invariants of Knots and 3-Manifolds
Title Quantum Invariants of Knots and 3-Manifolds PDF eBook
Author Vladimir G. Turaev
Publisher Walter de Gruyter GmbH & Co KG
Pages 608
Release 2016-07-11
Genre Mathematics
ISBN 3110435225

Download Quantum Invariants of Knots and 3-Manifolds Book in PDF, Epub and Kindle

Due to the strong appeal and wide use of this monograph, it is now available in its third revised edition. The monograph gives a systematic treatment of 3-dimensional topological quantum field theories (TQFTs) based on the work of the author with N. Reshetikhin and O. Viro. This subject was inspired by the discovery of the Jones polynomial of knots and the Witten-Chern-Simons field theory. On the algebraic side, the study of 3-dimensional TQFTs has been influenced by the theory of braided categories and the theory of quantum groups. The book is divided into three parts. Part I presents a construction of 3-dimensional TQFTs and 2-dimensional modular functors from so-called modular categories. This gives a vast class of knot invariants and 3-manifold invariants as well as a class of linear representations of the mapping class groups of surfaces. In Part II the technique of 6j-symbols is used to define state sum invariants of 3-manifolds. Their relation to the TQFTs constructed in Part I is established via the theory of shadows. Part III provides constructions of modular categories, based on quantum groups and skein modules of tangles in the 3-space. This fundamental contribution to topological quantum field theory is accessible to graduate students in mathematics and physics with knowledge of basic algebra and topology. It is an indispensable source for everyone who wishes to enter the forefront of this fascinating area at the borderline of mathematics and physics. Contents: Invariants of graphs in Euclidean 3-space and of closed 3-manifolds Foundations of topological quantum field theory Three-dimensional topological quantum field theory Two-dimensional modular functors 6j-symbols Simplicial state sums on 3-manifolds Shadows of manifolds and state sums on shadows Constructions of modular categories

Knots, Groups and 3-Manifolds (AM-84), Volume 84

Knots, Groups and 3-Manifolds (AM-84), Volume 84
Title Knots, Groups and 3-Manifolds (AM-84), Volume 84 PDF eBook
Author Lee Paul Neuwirth
Publisher Princeton University Press
Pages 352
Release 2016-03-02
Genre Mathematics
ISBN 140088151X

Download Knots, Groups and 3-Manifolds (AM-84), Volume 84 Book in PDF, Epub and Kindle

There is a sympathy of ideas among the fields of knot theory, infinite discrete group theory, and the topology of 3-manifolds. This book contains fifteen papers in which new results are proved in all three of these fields. These papers are dedicated to the memory of Ralph H. Fox, one of the world's leading topologists, by colleagues, former students, and friends. In knot theory, papers have been contributed by Goldsmith, Levine, Lomonaco, Perko, Trotter, and Whitten. Of these several are devoted to the study of branched covering spaces over knots and links, while others utilize the braid groups of Artin. Cossey and Smythe, Stallings, and Strasser address themselves to group theory. In his contribution Stallings describes the calculation of the groups In/In+1 where I is the augmentation ideal in a group ring RG. As a consequence, one has for each k an example of a k-generator l-relator group with no free homomorphs. In the third part, papers by Birman, Cappell, Milnor, Montesinos, Papakyriakopoulos, and Shalen comprise the treatment of 3-manifolds. Milnor gives, besides important new results, an exposition of certain aspects of our current knowledge regarding the 3- dimensional Brieskorn manifolds.

Knots, Links, Braids and 3-Manifolds

Knots, Links, Braids and 3-Manifolds
Title Knots, Links, Braids and 3-Manifolds PDF eBook
Author Viktor Vasilʹevich Prasolov
Publisher American Mathematical Soc.
Pages 250
Release 1997
Genre Mathematics
ISBN 0821808982

Download Knots, Links, Braids and 3-Manifolds Book in PDF, Epub and Kindle

This book is an introduction to the remarkable work of Vaughan Jones and Victor Vassiliev on knot and link invariants and its recent modifications and generalizations, including a mathematical treatment of Jones-Witten invariants. The mathematical prerequisites are minimal compared to other monographs in this area. Numerous figures and problems make this book suitable as a graduate level course text or for self-study.

Introduction to 3-Manifolds

Introduction to 3-Manifolds
Title Introduction to 3-Manifolds PDF eBook
Author Jennifer Schultens
Publisher American Mathematical Soc.
Pages 298
Release 2014-05-21
Genre Mathematics
ISBN 1470410206

Download Introduction to 3-Manifolds Book in PDF, Epub and Kindle

This book grew out of a graduate course on 3-manifolds and is intended for a mathematically experienced audience that is new to low-dimensional topology. The exposition begins with the definition of a manifold, explores possible additional structures on manifolds, discusses the classification of surfaces, introduces key foundational results for 3-manifolds, and provides an overview of knot theory. It then continues with more specialized topics by briefly considering triangulations of 3-manifolds, normal surface theory, and Heegaard splittings. The book finishes with a discussion of topics relevant to viewing 3-manifolds via the curve complex. With about 250 figures and more than 200 exercises, this book can serve as an excellent overview and starting point for the study of 3-manifolds.

Knots and Links

Knots and Links
Title Knots and Links PDF eBook
Author Dale Rolfsen
Publisher American Mathematical Soc.
Pages 458
Release 2003
Genre Mathematics
ISBN 0821834363

Download Knots and Links Book in PDF, Epub and Kindle

Rolfsen's beautiful book on knots and links can be read by anyone, from beginner to expert, who wants to learn about knot theory. Beginners find an inviting introduction to the elements of topology, emphasizing the tools needed for understanding knots, the fundamental group and van Kampen's theorem, for example, which are then applied to concrete problems, such as computing knot groups. For experts, Rolfsen explains advanced topics, such as the connections between knot theory and surgery and how they are useful to understanding three-manifolds. Besides providing a guide to understanding knot theory, the book offers 'practical' training. After reading it, you will be able to do many things: compute presentations of knot groups, Alexander polynomials, and other invariants; perform surgery on three-manifolds; and visualize knots and their complements.It is characterized by its hands-on approach and emphasis on a visual, geometric understanding. Rolfsen offers invaluable insight and strikes a perfect balance between giving technical details and offering informal explanations. The illustrations are superb, and a wealth of examples are included. Now back in print by the AMS, the book is still a standard reference in knot theory. It is written in a remarkable style that makes it useful for both beginners and researchers. Particularly noteworthy is the table of knots and links at the end. This volume is an excellent introduction to the topic and is suitable as a textbook for a course in knot theory or 3-manifolds. Other key books of interest on this topic available from the AMS are ""The Shoelace Book: A Mathematical Guide to the Best (and Worst) Ways to Lace your Shoes"" and ""The Knot Book.""

Quantum Invariants

Quantum Invariants
Title Quantum Invariants PDF eBook
Author Tomotada Ohtsuki
Publisher World Scientific
Pages 516
Release 2002
Genre Invariants
ISBN 9789812811172

Download Quantum Invariants Book in PDF, Epub and Kindle

This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum groups and from the monodromy of solutions to the Knizhnik-Zamolodchikov equation. With the introduction of the Kontsevich invariant and the theory of Vassiliev invariants, the quantum invariants become well-organized. Quantum and perturbative invariants, the LMO invariant, and finite type invariants of 3-manifolds are discussed. The ChernOCoSimons field theory and the WessOCoZuminoOCoWitten model are described as the physical background of the invariants. Contents: Knots and Polynomial Invariants; Braids and Representations of the Braid Groups; Operator Invariants of Tangles via Sliced Diagrams; Ribbon Hopf Algebras and Invariants of Links; Monodromy Representations of the Braid Groups Derived from the KnizhnikOCoZamolodchikov Equation; The Kontsevich Invariant; Vassiliev Invariants; Quantum Invariants of 3-Manifolds; Perturbative Invariants of Knots and 3-Manifolds; The LMO Invariant; Finite Type Invariants of Integral Homology 3-Spheres. Readership: Researchers, lecturers and graduate students in geometry, topology and mathematical physics."

Knots and Primes

Knots and Primes
Title Knots and Primes PDF eBook
Author Masanori Morishita
Publisher Springer Nature
Pages 268
Release
Genre
ISBN 9819992559

Download Knots and Primes Book in PDF, Epub and Kindle