Kinematic Design of Machines and Mechanisms
Title | Kinematic Design of Machines and Mechanisms PDF eBook |
Author | Homer D. Eckhardt |
Publisher | McGraw Hill Professional |
Pages | 674 |
Release | 1998 |
Genre | Science |
ISBN | 9780070189539 |
This text gives mechanical engineers and designers practical information and how-to methodologies for the application of the geometry of motion. It covers such devices as crank-slider, quick-return mechanisms, linkages, cams, and gear and gear trains.
Fundamentals of Kinematics and Dynamics of Machines and Mechanisms
Title | Fundamentals of Kinematics and Dynamics of Machines and Mechanisms PDF eBook |
Author | Oleg Vinogradov |
Publisher | CRC Press |
Pages | 306 |
Release | 2000-07-25 |
Genre | Science |
ISBN | 1420042335 |
The study of the kinematics and dynamics of machines lies at the very core of a mechanical engineering background. Although tremendous advances have been made in the computational and design tools now available, little has changed in the way the subject is presented, both in the classroom and in professional references. Fundamentals of Kinematics and Dynamics of Machines and Mechanisms brings the subject alive and current. The author's careful integration of Mathematica software gives readers a chance to perform symbolic analysis, to plot the results, and most importantly, to animate the motion. They get to "play" with the mechanism parameters and immediately see their effects. The downloadable resources contain Mathematica-based programs for suggested design projects. As useful as Mathematica is, however, a tool should not interfere with but enhance one's grasp of the concepts and the development of analytical skills. The author ensures this with his emphasis on the understanding and application of basic theoretical principles, unified approach to the analysis of planar mechanisms, and introduction to vibrations and rotordynamics.
Machines and Mechanisms
Title | Machines and Mechanisms PDF eBook |
Author | David H. Myszka |
Publisher | |
Pages | 556 |
Release | 2005 |
Genre | Machinery, Kinematics of |
ISBN | 9780132019149 |
Provides the techniques necessary to study the motion of machines, and emphasizes the application of kinematic theories to real-world machines consistent with the philosophy of engineering and technology programs. This book intents to bridge the gap between a theoretical study of kinematics and the application to practical mechanism.
Machines and Mechanisms
Title | Machines and Mechanisms PDF eBook |
Author | David H. Myszka |
Publisher | Prentice Hall |
Pages | 376 |
Release | 2012 |
Genre | Technology & Engineering |
ISBN | 9780132157803 |
This up-to-date introduction to kinematic analysis ensures relevance by using actual machines and mechanisms throughout. MACHINES & MECHANISMS, 4/e provides the techniques necessary to study the motion of machines while emphasizing the application of kinematic theories to real-world problems. State-of-the-art techniques and tools are utilized, and analytical techniques are presented without complex mathematics. Reflecting instructor and student feedback, this Fourth Edition's extensive improvements include: a new section introducing special-purpose mechanisms; expanded descriptions of kinematic properties; clearer identification of vector quantities through standard boldface notation; new timing charts; analytical synthesis methods; and more. All end-of-chapter problems have been reviewed, and many new problems have been added.
Theory of Machines and Mechanisms
Title | Theory of Machines and Mechanisms PDF eBook |
Author | John Joseph Uicker |
Publisher | Oxford University Press, USA |
Pages | 734 |
Release | 2003 |
Genre | Technology & Engineering |
ISBN | 9780195155983 |
Theory of Machines and Mechanisms, Third Edition, is a comprehensive study of rigid-body mechanical systems and provides background for continued study in stress, strength, fatigue, life, modes of failure, lubrication and other advanced aspects of the design of mechanical systems. This third edition provides the background, notation, and nomenclature essential for students to understand the various and independent technical approaches that exist in the field of mechanisms, kinematics, and dynamics of machines. The authors employ all methods of analysis and development, with balanced use of graphical and analytic methods. New material includes an introduction of kinematic coefficients, which clearly separates kinematic (geometric) effects from speed or dynamic dependence. At the suggestion of users, the authors have included no written computer programs, allowing professors and students to write their own and ensuring that the book does not become obsolete as computers and programming languages change. Part I introduces theory, nomenclature, notation, and methods of analysis. It describes all aspects of a mechanism (its nature, function, classification, and limitations) and covers kinematic analyses (position, velocity, and acceleration). Part II shows the engineering applications involved in the selection, specification, design, and sizing of mechanisms that accomplish specific motion objectives. It includes chapters on cam systems, gears, gear trains, synthesis of linkages, spatial mechanisms, and robotics. Part III presents the dynamics of machines and the consequences of the proposed mechanism design specifications. New dynamic devices whose functions cannot be explained or understood without dynamic analysis are included. This third edition incorporates entirely new chapters on the analysis and design of flywheels, governors, and gyroscopes.
Parallel Kinematics
Title | Parallel Kinematics PDF eBook |
Author | Xin-Jun Liu |
Publisher | Springer Science & Business Media |
Pages | 314 |
Release | 2013-08-15 |
Genre | Technology & Engineering |
ISBN | 3642369294 |
Parallel Kinematics- Type, Kinematics, and Optimal Design presents the results of 15 year's research on parallel mechanisms and parallel kinematics machines. This book covers the systematic classification of parallel mechanisms (PMs) as well as providing a large number of mechanical architectures of PMs available for use in practical applications. It focuses on the kinematic design of parallel robots. One successful application of parallel mechanisms in the field of machine tools, which is also called parallel kinematics machines, has been the emerging trend in advanced machine tools. The book describes not only the main aspects and important topics in parallel kinematics, but also references novel concepts and approaches, i.e. type synthesis based on evolution, performance evaluation and optimization based on screw theory, singularity model taking into account motion and force transmissibility, and others. This book is intended for researchers, scientists, engineers and postgraduates or above with interests in robotics and advanced machine tools technology such as parallel kinematics machines (PKMs). Xinjun Liu and Jinsong Wang, professors, work at The Institute of Manufacturing Engineering, Department of Precision Instruments and Mechanology, Tsinghua University.
Geometric Design of Linkages
Title | Geometric Design of Linkages PDF eBook |
Author | J. Michael McCarthy |
Publisher | Springer Science & Business Media |
Pages | 466 |
Release | 2010-11-11 |
Genre | Science |
ISBN | 1441978925 |
This book is an introduction to the mathematical theory of design for articulated mechanical systems known as linkages. The focus is on sizing mechanical constraints that guide the movement of a work piece, or end-effector, of the system. The function of the device is prescribed as a set of positions to be reachable by the end-effector; and the mechanical constraints are formed by joints that limit relative movement. The goal is to find all the devices that can achieve a specific task. Formulated in this way the design problem is purely geometric in character. Robot manipulators, walking machines, and mechanical hands are examples of articulated mechanical systems that rely on simple mechanical constraints to provide a complex workspace for the end- effector. The principles presented in this book form the foundation for a design theory for these devices. The emphasis, however, is on articulated systems with fewer degrees of freedom than that of the typical robotic system, and therefore, less complexity. This book will be useful to mathematics, engineering and computer science departments teaching courses on mathematical modeling of robotics and other articulated mechanical systems. This new edition includes research results of the past decade on the synthesis of multi loop planar and spherical linkages, and the use of homotopy methods and Clifford algebras in the synthesis of spatial serial chains. One new chapter on the synthesis of spatial serial chains introduces numerical homotopy and the linear product decomposition of polynomial systems. The second new chapter introduces the Clifford algebra formulation of the kinematics equations of serial chain robots. Examples are use throughout to demonstrate the theory.