Keras to Kubernetes
Title | Keras to Kubernetes PDF eBook |
Author | Dattaraj Rao |
Publisher | John Wiley & Sons |
Pages | 320 |
Release | 2019-05-07 |
Genre | Computers |
ISBN | 1119564832 |
Build a Keras model to scale and deploy on a Kubernetes cluster We have seen an exponential growth in the use of Artificial Intelligence (AI) over last few years. AI is becoming the new electricity and is touching every industry from retail to manufacturing to healthcare to entertainment. Within AI, were seeing a particular growth in Machine Learning (ML) and Deep Learning (DL) applications. ML is all about learning relationships from labeled (Supervised) or unlabeled data (Unsupervised). DL has many layers of learning and can extract patterns from unstructured data like images, video, audio, etc. em style="box-sizing: border-box;"Keras to Kubernetes: The Journey of a Machine Learning Model to Production takes you through real-world examples of building DL models in Keras for recognizing product logos in images and extracting sentiment from text. You will then take that trained model and package it as a web application container before learning how to deploy this model at scale on a Kubernetes cluster. You will understand the different practical steps involved in real-world ML implementations which go beyond the algorithms. Find hands-on learning examples Learn to uses Keras and Kubernetes to deploy Machine Learning models Discover new ways to collect and manage your image and text data with Machine Learning Reuse examples as-is to deploy your models Understand the ML model development lifecycle and deployment to production If youre ready to learn about one of the most popular DL frameworks and build production applications with it, youve come to the right place!
Kubeflow Operations Guide
Title | Kubeflow Operations Guide PDF eBook |
Author | Josh Patterson |
Publisher | "O'Reilly Media, Inc." |
Pages | 331 |
Release | 2020-12-04 |
Genre | Computers |
ISBN | 1492053228 |
Building models is a small part of the story when it comes to deploying machine learning applications. The entire process involves developing, orchestrating, deploying, and running scalable and portable machine learning workloads--a process Kubeflow makes much easier. This practical book shows data scientists, data engineers, and platform architects how to plan and execute a Kubeflow project to make their Kubernetes workflows portable and scalable. Authors Josh Patterson, Michael Katzenellenbogen, and Austin Harris demonstrate how this open source platform orchestrates workflows by managing machine learning pipelines. You'll learn how to plan and execute a Kubeflow platform that can support workflows from on-premises to cloud providers including Google, Amazon, and Microsoft. Dive into Kubeflow architecture and learn best practices for using the platform Understand the process of planning your Kubeflow deployment Install Kubeflow on an existing on-premises Kubernetes cluster Deploy Kubeflow on Google Cloud Platform step-by-step from the command line Use the managed Amazon Elastic Kubernetes Service (EKS) to deploy Kubeflow on AWS Deploy and manage Kubeflow across a network of Azure cloud data centers around the world Use KFServing to develop and deploy machine learning models
Mastering TensorFlow 1. X
Title | Mastering TensorFlow 1. X PDF eBook |
Author | Armando Fandango |
Publisher | |
Pages | 474 |
Release | 2018-01-22 |
Genre | Computers |
ISBN | 9781788292061 |
Build, scale, and deploy deep neural network models using the star libraries in Python Key Features Delve into advanced machine learning and deep learning use cases using Tensorflow and Keras Build, deploy, and scale end-to-end deep neural network models in a production environment Learn to deploy TensorFlow on mobile, and distributed TensorFlow on GPU, Clusters, and Kubernetes Book Description TensorFlow is the most popular numerical computation library built from the ground up for distributed, cloud, and mobile environments. TensorFlow represents the data as tensors and the computation as graphs. This book is a comprehensive guide that lets you explore the advanced features of TensorFlow 1.x. Gain insight into TensorFlow Core, Keras, TF Estimators, TFLearn, TF Slim, Pretty Tensor, and Sonnet. Leverage the power of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Throughout the book, you will obtain hands-on experience with varied datasets, such as MNIST, CIFAR-10, PTB, text8, and COCO-Images. You will learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF Clusters, deploy production models with TensorFlow Serving, and build and deploy TensorFlow models for mobile and embedded devices on Android and iOS platforms. You will see how to call TensorFlow and Keras API within the R statistical software, and learn the required techniques for debugging when the TensorFlow API-based code does not work as expected. The book helps you obtain in-depth knowledge of TensorFlow, making you the go-to person for solving artificial intelligence problems. By the end of this guide, you will have mastered the offerings of TensorFlow and Keras, and gained the skills you need to build smarter, faster, and efficient machine learning and deep learning systems. What you will learn Master advanced concepts of deep learning such as transfer learning, reinforcement learning, generative models and more, using TensorFlow and Keras Perform supervised (classification and regression) and unsupervised (clustering) learning to solve machine learning tasks Build end-to-end deep learning (CNN, RNN, and Autoencoders) models with TensorFlow Scale and deploy production models with distributed and high-performance computing on GPU and clusters Build TensorFlow models to work with multilayer perceptrons using Keras, TFLearn, and R Learn the functionalities of smart apps by building and deploying TensorFlow models on iOS and Android devices Supercharge TensorFlow with distributed training and deployment on Kubernetes and TensorFlow Clusters Who this book is for This book is for data scientists, machine learning engineers, artificial intelligence engineers, and for all TensorFlow users who wish to upgrade their TensorFlow knowledge and work on various machine learning and deep learning problems. If you are looking for an easy-to-follow guide that underlines the intricacies and complex use cases of machine learning, you will find this book extremely useful. Some basic understanding of TensorFlow is required to get the most out of the book.
Keras Deep Learning Cookbook
Title | Keras Deep Learning Cookbook PDF eBook |
Author | Rajdeep Dua |
Publisher | Packt Publishing Ltd |
Pages | 244 |
Release | 2018-10-31 |
Genre | Computers |
ISBN | 1788623088 |
Leverage the power of deep learning and Keras to develop smarter and more efficient data models Key FeaturesUnderstand different neural networks and their implementation using KerasExplore recipes for training and fine-tuning your neural network modelsPut your deep learning knowledge to practice with real-world use-cases, tips, and tricksBook Description Keras has quickly emerged as a popular deep learning library. Written in Python, it allows you to train convolutional as well as recurrent neural networks with speed and accuracy. The Keras Deep Learning Cookbook shows you how to tackle different problems encountered while training efficient deep learning models, with the help of the popular Keras library. Starting with installing and setting up Keras, the book demonstrates how you can perform deep learning with Keras in the TensorFlow. From loading data to fitting and evaluating your model for optimal performance, you will work through a step-by-step process to tackle every possible problem faced while training deep models. You will implement convolutional and recurrent neural networks, adversarial networks, and more with the help of this handy guide. In addition to this, you will learn how to train these models for real-world image and language processing tasks. By the end of this book, you will have a practical, hands-on understanding of how you can leverage the power of Python and Keras to perform effective deep learning What you will learnInstall and configure Keras in TensorFlowMaster neural network programming using the Keras library Understand the different Keras layers Use Keras to implement simple feed-forward neural networks, CNNs and RNNsWork with various datasets and models used for image and text classificationDevelop text summarization and reinforcement learning models using KerasWho this book is for Keras Deep Learning Cookbook is for you if you are a data scientist or machine learning expert who wants to find practical solutions to common problems encountered while training deep learning models. A basic understanding of Python and some experience in machine learning and neural networks is required for this book.
Pro Django
Title | Pro Django PDF eBook |
Author | Marty Alchin |
Publisher | Apress |
Pages | 312 |
Release | 2009-01-21 |
Genre | Computers |
ISBN | 1430210486 |
Django is the leading Python web application development framework. Learn how to leverage the Django web framework to its full potential in this advanced tutorial and reference. Endorsed by Django, Pro Django more or less picks up where The Definitive Guide to Django left off and examines in greater detail the unusual and complex problems that Python web application developers can face and how to solve them. Provides in–depth information about advanced tools and techniques available in every Django installation Runs the gamut from the theory of Django’s internal operations to actual code that solves real–world problems for high–volume environments Goes above and beyond other books, leaving the basics behind Shows how Django can do things even its core developers never dreamed possible
Kubeflow for Machine Learning
Title | Kubeflow for Machine Learning PDF eBook |
Author | Trevor Grant |
Publisher | "O'Reilly Media, Inc." |
Pages | 270 |
Release | 2020-10-13 |
Genre | Computers |
ISBN | 1492050075 |
If you're training a machine learning model but aren't sure how to put it into production, this book will get you there. Kubeflow provides a collection of cloud native tools for different stages of a model's lifecycle, from data exploration, feature preparation, and model training to model serving. This guide helps data scientists build production-grade machine learning implementations with Kubeflow and shows data engineers how to make models scalable and reliable. Using examples throughout the book, authors Holden Karau, Trevor Grant, Ilan Filonenko, Richard Liu, and Boris Lublinsky explain how to use Kubeflow to train and serve your machine learning models on top of Kubernetes in the cloud or in a development environment on-premises. Understand Kubeflow's design, core components, and the problems it solves Understand the differences between Kubeflow on different cluster types Train models using Kubeflow with popular tools including Scikit-learn, TensorFlow, and Apache Spark Keep your model up to date with Kubeflow Pipelines Understand how to capture model training metadata Explore how to extend Kubeflow with additional open source tools Use hyperparameter tuning for training Learn how to serve your model in production
Kubernetes in Action
Title | Kubernetes in Action PDF eBook |
Author | Marko Luksa |
Publisher | Simon and Schuster |
Pages | 1062 |
Release | 2017-12-14 |
Genre | Computers |
ISBN | 1638355347 |
Summary Kubernetes in Action is a comprehensive guide to effectively developing and running applications in a Kubernetes environment. Before diving into Kubernetes, the book gives an overview of container technologies like Docker, including how to build containers, so that even readers who haven't used these technologies before can get up and running. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology Kubernetes is Greek for "helmsman," your guide through unknown waters. The Kubernetes container orchestration system safely manages the structure and flow of a distributed application, organizing containers and services for maximum efficiency. Kubernetes serves as an operating system for your clusters, eliminating the need to factor the underlying network and server infrastructure into your designs. About the Book Kubernetes in Action teaches you to use Kubernetes to deploy container-based distributed applications. You'll start with an overview of Docker and Kubernetes before building your first Kubernetes cluster. You'll gradually expand your initial application, adding features and deepening your knowledge of Kubernetes architecture and operation. As you navigate this comprehensive guide, you'll explore high-value topics like monitoring, tuning, and scaling. What's Inside Kubernetes' internals Deploying containers across a cluster Securing clusters Updating applications with zero downtime About the Reader Written for intermediate software developers with little or no familiarity with Docker or container orchestration systems. About the Author Marko Luksa is an engineer at Red Hat working on Kubernetes and OpenShift. Table of Contents PART 1 - OVERVIEW Introducing Kubernetes First steps with Docker and Kubernetes PART 2 - CORE CONCEPTS Pods: running containers in Kubernetes Replication and other controllers: deploying managed pods Services: enabling clients to discover and talk to pods Volumes: attaching disk storage to containers ConfigMaps and Secrets: configuring applications Accessing pod metadata and other resources from applications Deployments: updating applications declaratively StatefulSets: deploying replicated stateful applications PART 3 - BEYOND THE BASICS Understanding Kubernetes internals Securing the Kubernetes API server Securing cluster nodes and the network Managing pods' computational resources Automatic scaling of pods and cluster nodes Advanced scheduling Best practices for developing apps Extending Kubernetes