Kähler Metric and Moduli Spaces
Title | Kähler Metric and Moduli Spaces PDF eBook |
Author | T. Ochiai |
Publisher | Academic Press |
Pages | 472 |
Release | 2013-10-22 |
Genre | Mathematics |
ISBN | 1483214672 |
Kähler Metric and Moduli Spaces, Volume 18-II covers survey notes from the expository lectures given during the seminars in the academic year of 1987 for graduate students and mature mathematicians who were not experts on the topics considered during the sessions about partial differential equations. The book discusses basic facts on Einstein metrics in complex geometry; Einstein-Kähler metrics with positive or non-positive Ricci curvature; Yang-Mills connections; and Einstein-Hermitian metrics. The text then describes the tangent sheaves of minimal varieties; Ricci-Flat Kähler metrics on affine algebraic manifolds; and degenerations of Kähler-Einstein. The moduli of Einstein metrics on a K3 surface and degeneration of Type I and the uniformization of complex surfaces are also considered. Mathematicians and graduate students taking differential and analytic geometry will find the book useful.
Test Configurations, Stabilities and Canonical Kähler Metrics
Title | Test Configurations, Stabilities and Canonical Kähler Metrics PDF eBook |
Author | Toshiki Mabuchi |
Publisher | Springer Nature |
Pages | 134 |
Release | 2021-03-25 |
Genre | Mathematics |
ISBN | 9811605009 |
The Yau-Tian-Donaldson conjecture for anti-canonical polarization was recently solved affirmatively by Chen-Donaldson-Sun and Tian. However, this conjecture is still open for general polarizations or more generally in extremal Kähler cases. In this book, the unsolved cases of the conjecture will be discussed. It will be shown that the problem is closely related to the geometry of moduli spaces of test configurations for polarized algebraic manifolds. Another important tool in our approach is the Chow norm introduced by Zhang. This is closely related to Ding’s functional, and plays a crucial role in our differential geometric study of stability. By discussing the Chow norm from various points of view, we shall make a systematic study of the existence problem of extremal Kähler metrics.
An Introduction to Extremal Kahler Metrics
Title | An Introduction to Extremal Kahler Metrics PDF eBook |
Author | Gábor Székelyhidi |
Publisher | American Mathematical Soc. |
Pages | 210 |
Release | 2014-06-19 |
Genre | Mathematics |
ISBN | 1470410478 |
A basic problem in differential geometry is to find canonical metrics on manifolds. The best known example of this is the classical uniformization theorem for Riemann surfaces. Extremal metrics were introduced by Calabi as an attempt at finding a higher-dimensional generalization of this result, in the setting of Kähler geometry. This book gives an introduction to the study of extremal Kähler metrics and in particular to the conjectural picture relating the existence of extremal metrics on projective manifolds to the stability of the underlying manifold in the sense of algebraic geometry. The book addresses some of the basic ideas on both the analytic and the algebraic sides of this picture. An overview is given of much of the necessary background material, such as basic Kähler geometry, moment maps, and geometric invariant theory. Beyond the basic definitions and properties of extremal metrics, several highlights of the theory are discussed at a level accessible to graduate students: Yau's theorem on the existence of Kähler-Einstein metrics, the Bergman kernel expansion due to Tian, Donaldson's lower bound for the Calabi energy, and Arezzo-Pacard's existence theorem for constant scalar curvature Kähler metrics on blow-ups.
The Geometry of Moduli Spaces of Sheaves
Title | The Geometry of Moduli Spaces of Sheaves PDF eBook |
Author | Daniel Huybrechts |
Publisher | Cambridge University Press |
Pages | 345 |
Release | 2010-05-27 |
Genre | Mathematics |
ISBN | 1139485822 |
This edition has been updated to reflect recent advances in the theory of semistable coherent sheaves and their moduli spaces. The authors review changes in the field and point the reader towards further literature. An ideal text for graduate students or mathematicians with a background in algebraic geometry.
Calabi-Yau Manifolds and Related Geometries
Title | Calabi-Yau Manifolds and Related Geometries PDF eBook |
Author | Mark Gross |
Publisher | Springer Science & Business Media |
Pages | 245 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 3642190049 |
This is an introduction to a very active field of research, on the boundary between mathematics and physics. It is aimed at graduate students and researchers in geometry and string theory. Proofs or sketches are given for many important results. From the reviews: "An excellent introduction to current research in the geometry of Calabi-Yau manifolds, hyper-Kähler manifolds, exceptional holonomy and mirror symmetry....This is an excellent and useful book." --MATHEMATICAL REVIEWS
Complex Manifolds
Title | Complex Manifolds PDF eBook |
Author | Steven Bell |
Publisher | Springer Science & Business Media |
Pages | 324 |
Release | 1997-12-11 |
Genre | Mathematics |
ISBN | 9783540629955 |
The articles in this volume were written to commemorate Reinhold Remmert's 60th birthday in June, 1990. They are surveys, meant to facilitate access to some of the many aspects of the theory of complex manifolds, and demonstrate the interplay between complex analysis and many other branches of mathematics, algebraic geometry, differential topology, representations of Lie groups, and mathematical physics being only the most obvious of these branches. Each of these articles should serve not only to describe the particular circle of ideas in complex analysis with which it deals but also as a guide to the many mathematical ideas related to its theme.
The Kobayashi-hitchin Correspondence
Title | The Kobayashi-hitchin Correspondence PDF eBook |
Author | Martin Lubke |
Publisher | World Scientific |
Pages | 265 |
Release | 1995-09-30 |
Genre | Mathematics |
ISBN | 9814500828 |
By the Kobayashi-Hitchin correspondence, the authors of this book mean the isomorphy of the moduli spaces Mst of stable holomorphic — resp. MHE of irreducible Hermitian-Einstein — structures in a differentiable complex vector bundle on a compact complex manifold. They give a complete proof of this result in the most general setting, and treat several applications and some new examples.After discussing the stability concept on arbitrary compact complex manifolds in Chapter 1, the authors consider, in Chapter 2, Hermitian-Einstein structures and prove the stability of irreducible Hermitian-Einstein bundles. This implies the existence of a natural map I from MHE to Mst which is bijective by the result of (the rather technical) Chapter 3. In Chapter 4 the moduli spaces involved are studied in detail, in particular it is shown that their natural analytic structures are isomorphic via I. Also a comparison theorem for moduli spaces of instantons resp. stable bundles is proved; this is the form in which the Kobayashi-Hitchin has been used in Donaldson theory to study differentiable structures of complex surfaces. The fact that I is an isomorphism of real analytic spaces is applied in Chapter 5 to show the openness of the stability condition and the existence of a natural Hermitian metric in the moduli space, and to study, at least in some cases, the dependence of Mst on the base metric used to define stability. Another application is a rather simple proof of Bogomolov's theorem on surfaces of type VII0. In Chapter 6, some moduli spaces of stable bundles are calculated to illustrate what can happen in the general (i.e. not necessarily Kähler) case compared to the algebraic or Kähler one. Finally, appendices containing results, especially from Hermitian geometry and analysis, in the form they are used in the main part of the book are included.