Algebraic K-Theory and Its Applications
Title | Algebraic K-Theory and Its Applications PDF eBook |
Author | Jonathan Rosenberg |
Publisher | Springer Science & Business Media |
Pages | 404 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461243149 |
Algebraic K-Theory is crucial in many areas of modern mathematics, especially algebraic topology, number theory, algebraic geometry, and operator theory. This text is designed to help graduate students in other areas learn the basics of K-Theory and get a feel for its many applications. Topics include algebraic topology, homological algebra, algebraic number theory, and an introduction to cyclic homology and its interrelationship with K-Theory.
The $K$-book
Title | The $K$-book PDF eBook |
Author | Charles A. Weibel |
Publisher | American Mathematical Soc. |
Pages | 634 |
Release | 2013-06-13 |
Genre | Mathematics |
ISBN | 0821891324 |
Informally, $K$-theory is a tool for probing the structure of a mathematical object such as a ring or a topological space in terms of suitably parameterized vector spaces and producing important intrinsic invariants which are useful in the study of algebr
The Local Structure of Algebraic K-Theory
Title | The Local Structure of Algebraic K-Theory PDF eBook |
Author | Bjørn Ian Dundas |
Publisher | Springer Science & Business Media |
Pages | 447 |
Release | 2012-09-06 |
Genre | Mathematics |
ISBN | 1447143930 |
Algebraic K-theory encodes important invariants for several mathematical disciplines, spanning from geometric topology and functional analysis to number theory and algebraic geometry. As is commonly encountered, this powerful mathematical object is very hard to calculate. Apart from Quillen's calculations of finite fields and Suslin's calculation of algebraically closed fields, few complete calculations were available before the discovery of homological invariants offered by motivic cohomology and topological cyclic homology. This book covers the connection between algebraic K-theory and Bökstedt, Hsiang and Madsen's topological cyclic homology and proves that the difference between the theories are ‘locally constant’. The usefulness of this theorem stems from being more accessible for calculations than K-theory, and hence a single calculation of K-theory can be used with homological calculations to obtain a host of ‘nearby’ calculations in K-theory. For instance, Quillen's calculation of the K-theory of finite fields gives rise to Hesselholt and Madsen's calculations for local fields, and Voevodsky's calculations for the integers give insight into the diffeomorphisms of manifolds. In addition to the proof of the full integral version of the local correspondence between K-theory and topological cyclic homology, the book provides an introduction to the necessary background in algebraic K-theory and highly structured homotopy theory; collecting all necessary tools into one common framework. It relies on simplicial techniques, and contains an appendix summarizing the methods widely used in the field. The book is intended for graduate students and scientists interested in algebraic K-theory, and presupposes a basic knowledge of algebraic topology.
Introduction to Algebraic K-theory
Title | Introduction to Algebraic K-theory PDF eBook |
Author | John Willard Milnor |
Publisher | Princeton University Press |
Pages | 204 |
Release | 1971 |
Genre | Mathematics |
ISBN | 9780691081014 |
Algebraic K-theory describes a branch of algebra that centers about two functors. K0 and K1, which assign to each associative ring ∧ an abelian group K0∧ or K1∧ respectively. Professor Milnor sets out, in the present work, to define and study an analogous functor K2, also from associative rings to abelian groups. Just as functors K0 and K1 are important to geometric topologists, K2 is now considered to have similar topological applications. The exposition includes, besides K-theory, a considerable amount of related arithmetic.
K-theory and Homological Algebra
Title | K-theory and Homological Algebra PDF eBook |
Author | Hvedri Inassaridze |
Publisher | Springer |
Pages | 324 |
Release | 2006-11-14 |
Genre | Mathematics |
ISBN | 3540471626 |
An Algebraic Introduction to K-Theory
Title | An Algebraic Introduction to K-Theory PDF eBook |
Author | Bruce A. Magurn |
Publisher | Cambridge University Press |
Pages | 704 |
Release | 2002-05-20 |
Genre | Mathematics |
ISBN | 1107079446 |
This is an introduction to algebraic K-theory with no prerequisite beyond a first semester of algebra (including Galois theory and modules over a principal ideal domain). The presentation is almost entirely self-contained, and is divided into short sections with exercises to reinforce the ideas and suggest further lines of inquiry. No experience with analysis, geometry, number theory or topology is assumed. Within the context of linear algebra, K-theory organises and clarifies the relations among ideal class groups, group representations, quadratic forms, dimensions of a ring, determinants, quadratic reciprocity and Brauer groups of fields. By including introductions to standard algebra topics (tensor products, localisation, Jacobson radical, chain conditions, Dedekind domains, semi-simple rings, exterior algebras), the author makes algebraic K-theory accessible to first-year graduate students and other mathematically sophisticated readers. Even if your algebra is rusty, you can read this book; the necessary background is here, with proofs.
Algebraic K-Theory
Title | Algebraic K-Theory PDF eBook |
Author | Vasudevan Srinivas |
Publisher | Springer Science & Business Media |
Pages | 328 |
Release | 2013-11-21 |
Genre | Science |
ISBN | 1489967354 |