Option Pricing and Estimation of Financial Models with R
Title | Option Pricing and Estimation of Financial Models with R PDF eBook |
Author | Stefano M. Iacus |
Publisher | John Wiley & Sons |
Pages | 402 |
Release | 2011-02-23 |
Genre | Business & Economics |
ISBN | 1119990203 |
Presents inference and simulation of stochastic process in the field of model calibration for financial times series modelled by continuous time processes and numerical option pricing. Introduces the bases of probability theory and goes on to explain how to model financial times series with continuous models, how to calibrate them from discrete data and further covers option pricing with one or more underlying assets based on these models. Analysis and implementation of models goes beyond the standard Black and Scholes framework and includes Markov switching models, Lévy models and other models with jumps (e.g. the telegraph process); Topics other than option pricing include: volatility and covariation estimation, change point analysis, asymptotic expansion and classification of financial time series from a statistical viewpoint. The book features problems with solutions and examples. All the examples and R code are available as an additional R package, therefore all the examples can be reproduced.
Financial Modelling with Jump Processes
Title | Financial Modelling with Jump Processes PDF eBook |
Author | Peter Tankov |
Publisher | CRC Press |
Pages | 552 |
Release | 2003-12-30 |
Genre | Business & Economics |
ISBN | 1135437947 |
WINNER of a Riskbook.com Best of 2004 Book Award! During the last decade, financial models based on jump processes have acquired increasing popularity in risk management and option pricing. Much has been published on the subject, but the technical nature of most papers makes them difficult for nonspecialists to understand, and the mathematic
Financial Models with Levy Processes and Volatility Clustering
Title | Financial Models with Levy Processes and Volatility Clustering PDF eBook |
Author | Svetlozar T. Rachev |
Publisher | John Wiley & Sons |
Pages | 316 |
Release | 2011-02-08 |
Genre | Business & Economics |
ISBN | 0470937262 |
An in-depth guide to understanding probability distributions and financial modeling for the purposes of investment management In Financial Models with Lévy Processes and Volatility Clustering, the expert author team provides a framework to model the behavior of stock returns in both a univariate and a multivariate setting, providing you with practical applications to option pricing and portfolio management. They also explain the reasons for working with non-normal distribution in financial modeling and the best methodologies for employing it. The book's framework includes the basics of probability distributions and explains the alpha-stable distribution and the tempered stable distribution. The authors also explore discrete time option pricing models, beginning with the classical normal model with volatility clustering to more recent models that consider both volatility clustering and heavy tails. Reviews the basics of probability distributions Analyzes a continuous time option pricing model (the so-called exponential Lévy model) Defines a discrete time model with volatility clustering and how to price options using Monte Carlo methods Studies two multivariate settings that are suitable to explain joint extreme events Financial Models with Lévy Processes and Volatility Clustering is a thorough guide to classical probability distribution methods and brand new methodologies for financial modeling.
Simulation and Inference for Stochastic Processes with YUIMA
Title | Simulation and Inference for Stochastic Processes with YUIMA PDF eBook |
Author | Stefano M. Iacus |
Publisher | Springer |
Pages | 277 |
Release | 2018-06-01 |
Genre | Computers |
ISBN | 3319555693 |
The YUIMA package is the first comprehensive R framework based on S4 classes and methods which allows for the simulation of stochastic differential equations driven by Wiener process, Lévy processes or fractional Brownian motion, as well as CARMA, COGARCH, and Point processes. The package performs various central statistical analyses such as quasi maximum likelihood estimation, adaptive Bayes estimation, structural change point analysis, hypotheses testing, asynchronous covariance estimation, lead-lag estimation, LASSO model selection, and so on. YUIMA also supports stochastic numerical analysis by fast computation of the expected value of functionals of stochastic processes through automatic asymptotic expansion by means of the Malliavin calculus. All models can be multidimensional, multiparametric or non parametric.The book explains briefly the underlying theory for simulation and inference of several classes of stochastic processes and then presents both simulation experiments and applications to real data. Although these processes have been originally proposed in physics and more recently in finance, they are becoming popular also in biology due to the fact the time course experimental data are now available. The YUIMA package, available on CRAN, can be freely downloaded and this companion book will make the user able to start his or her analysis from the first page.
Financial Modeling Under Non-Gaussian Distributions
Title | Financial Modeling Under Non-Gaussian Distributions PDF eBook |
Author | Eric Jondeau |
Publisher | Springer Science & Business Media |
Pages | 541 |
Release | 2007-04-05 |
Genre | Mathematics |
ISBN | 1846286964 |
This book examines non-Gaussian distributions. It addresses the causes and consequences of non-normality and time dependency in both asset returns and option prices. The book is written for non-mathematicians who want to model financial market prices so the emphasis throughout is on practice. There are abundant empirical illustrations of the models and techniques described, many of which could be equally applied to other financial time series.
Continuous Time Processes for Finance
Title | Continuous Time Processes for Finance PDF eBook |
Author | Donatien Hainaut |
Publisher | Springer Nature |
Pages | 359 |
Release | 2022-08-25 |
Genre | Mathematics |
ISBN | 3031063619 |
This book explores recent topics in quantitative finance with an emphasis on applications and calibration to time-series. This last aspect is often neglected in the existing mathematical finance literature while it is crucial for risk management. The first part of this book focuses on switching regime processes that allow to model economic cycles in financial markets. After a presentation of their mathematical features and applications to stocks and interest rates, the estimation with the Hamilton filter and Markov Chain Monte-Carlo algorithm (MCMC) is detailed. A second part focuses on self-excited processes for modeling the clustering of shocks in financial markets. These processes recently receive a lot of attention from researchers and we focus here on its econometric estimation and its simulation. A chapter is dedicated to estimation of stochastic volatility models. Two chapters are dedicated to the fractional Brownian motion and Gaussian fields. After a summary of their features, we present applications for stock and interest rate modeling. Two chapters focuses on sub-diffusions that allows to replicate illiquidity in financial markets. This book targets undergraduate students who have followed a first course of stochastic finance and practitioners as quantitative analyst or actuaries working in risk management.
Parameter Estimation in Stochastic Volatility Models
Title | Parameter Estimation in Stochastic Volatility Models PDF eBook |
Author | Jaya P. N. Bishwal |
Publisher | Springer Nature |
Pages | 634 |
Release | 2022-08-06 |
Genre | Mathematics |
ISBN | 3031038614 |
This book develops alternative methods to estimate the unknown parameters in stochastic volatility models, offering a new approach to test model accuracy. While there is ample research to document stochastic differential equation models driven by Brownian motion based on discrete observations of the underlying diffusion process, these traditional methods often fail to estimate the unknown parameters in the unobserved volatility processes. This text studies the second order rate of weak convergence to normality to obtain refined inference results like confidence interval, as well as nontraditional continuous time stochastic volatility models driven by fractional Levy processes. By incorporating jumps and long memory into the volatility process, these new methods will help better predict option pricing and stock market crash risk. Some simulation algorithms for numerical experiments are provided.