Jacobi Operators and Completely Integrable Nonlinear Lattices

Jacobi Operators and Completely Integrable Nonlinear Lattices
Title Jacobi Operators and Completely Integrable Nonlinear Lattices PDF eBook
Author Gerald Teschl
Publisher American Mathematical Soc.
Pages 373
Release 2000
Genre Mathematics
ISBN 0821819402

Download Jacobi Operators and Completely Integrable Nonlinear Lattices Book in PDF, Epub and Kindle

This volume serves as an introduction and reference source on spectral and inverse theory of Jacobi operators and applications of these theories to the Toda and Kac-van Moerbeke hierarchy.

Large Deviations for Stochastic Processes

Large Deviations for Stochastic Processes
Title Large Deviations for Stochastic Processes PDF eBook
Author Jin Feng
Publisher American Mathematical Soc.
Pages 426
Release 2015-02-03
Genre Mathematics
ISBN 1470418703

Download Large Deviations for Stochastic Processes Book in PDF, Epub and Kindle

The book is devoted to the results on large deviations for a class of stochastic processes. Following an introduction and overview, the material is presented in three parts. Part 1 gives necessary and sufficient conditions for exponential tightness that are analogous to conditions for tightness in the theory of weak convergence. Part 2 focuses on Markov processes in metric spaces. For a sequence of such processes, convergence of Fleming's logarithmically transformed nonlinear semigroups is shown to imply the large deviation principle in a manner analogous to the use of convergence of linear semigroups in weak convergence. Viscosity solution methods provide applicable conditions for the necessary convergence. Part 3 discusses methods for verifying the comparison principle for viscosity solutions and applies the general theory to obtain a variety of new and known results on large deviations for Markov processes. In examples concerning infinite dimensional state spaces, new comparison principles are derived for a class of Hamilton-Jacobi equations in Hilbert spaces and in spaces of probability measures.

Isometric Embedding of Riemannian Manifolds in Euclidean Spaces

Isometric Embedding of Riemannian Manifolds in Euclidean Spaces
Title Isometric Embedding of Riemannian Manifolds in Euclidean Spaces PDF eBook
Author Qing Han
Publisher American Mathematical Soc.
Pages 278
Release 2006
Genre Mathematics
ISBN 0821840711

Download Isometric Embedding of Riemannian Manifolds in Euclidean Spaces Book in PDF, Epub and Kindle

The question of the existence of isometric embeddings of Riemannian manifolds in Euclidean space is already more than a century old. This book presents, in a systematic way, results both local and global and in arbitrary dimension but with a focus on the isometric embedding of surfaces in ${\mathbb R}^3$. The emphasis is on those PDE techniques which are essential to the most important results of the last century. The classic results in this book include the Janet-Cartan Theorem, Nirenberg's solution of the Weyl problem, and Nash's Embedding Theorem, with a simplified proof by Gunther. The book also includes the main results from the past twenty years, both local and global, on the isometric embedding of surfaces in Euclidean 3-space. The work will be indispensable to researchers in the area. Moreover, the authors integrate the results and techniques into a unified whole, providing a good entry point into the area for advanced graduate students or anyone interested in this subject. The authors avoid what is technically complicated. Background knowledge is kept to an essential minimum: a one-semester course in differential geometry and a one-year course in partial differential equations.

Painlevé Transcendents

Painlevé Transcendents
Title Painlevé Transcendents PDF eBook
Author Athanassios S. Fokas
Publisher American Mathematical Society
Pages 570
Release 2023-11-20
Genre Mathematics
ISBN 1470475561

Download Painlevé Transcendents Book in PDF, Epub and Kindle

At the turn of the twentieth century, the French mathematician Paul Painlevé and his students classified second order nonlinear ordinary differential equations with the property that the location of possible branch points and essential singularities of their solutions does not depend on initial conditions. It turned out that there are only six such equations (up to natural equivalence), which later became known as Painlevé I–VI. Although these equations were initially obtained answering a strictly mathematical question, they appeared later in an astonishing (and growing) range of applications, including, e.g., statistical physics, fluid mechanics, random matrices, and orthogonal polynomials. Actually, it is now becoming clear that the Painlevé transcendents (i.e., the solutions of the Painlevé equations) play the same role in nonlinear mathematical physics that the classical special functions, such as Airy and Bessel functions, play in linear physics. The explicit formulas relating the asymptotic behaviour of the classical special functions at different critical points play a crucial role in the applications of these functions. It is shown in this book that even though the six Painlevé equations are nonlinear, it is still possible, using a new technique called the Riemann-Hilbert formalism, to obtain analogous explicit formulas for the Painlevé transcendents. This striking fact, apparently unknown to Painlevé and his contemporaries, is the key ingredient for the remarkable applicability of these “nonlinear special functions”. The book describes in detail the Riemann-Hilbert method and emphasizes its close connection to classical monodromy theory of linear equations as well as to modern theory of integrable systems. In addition, the book contains an ample collection of material concerning the asymptotics of the Painlevé functions and their various applications, which makes it a good reference source for everyone working in the theory and applications of Painlevé equations and related areas.

Parametrized Homotopy Theory

Parametrized Homotopy Theory
Title Parametrized Homotopy Theory PDF eBook
Author J. Peter May
Publisher American Mathematical Soc.
Pages 456
Release 2006
Genre Mathematics
ISBN 0821839225

Download Parametrized Homotopy Theory Book in PDF, Epub and Kindle

This book develops rigorous foundations for parametrized homotopy theory, which is the algebraic topology of spaces and spectra that are continuously parametrized by the points of a base space. It also begins the systematic study of parametrized homology and cohomology theories. The parametrized world provides the natural home for many classical notions and results, such as orientation theory, the Thom isomorphism, Atiyah and Poincare duality, transfer maps, the Adams and Wirthmuller isomorphisms, and the Serre and Eilenberg-Moore spectral sequences. But in addition to providing a clearer conceptual outlook on these classical notions, it also provides powerful methods to study new phenomena, such as twisted $K$-theory, and to make new constructions, such as iterated Thom spectra. Duality theory in the parametrized setting is particularly illuminating and comes in two flavors. One allows the construction and analysis of transfer maps, and a quite different one relates parametrized homology to parametrized cohomology. The latter is based formally on a new theory of duality in symmetric bicategories that is of considerable independent interest. The text brings together many recent developments in homotopy theory. It provides a highly structured theory of parametrized spectra, and it extends parametrized homotopy theory to the equivariant setting. The theory of topological model categories is given a more thorough treatment than is available in the literature. This is used, together with an interesting blend of classical methods, to resolve basic foundational problems that have no nonparametrized counterparts.

Entropy and the Quantum II

Entropy and the Quantum II
Title Entropy and the Quantum II PDF eBook
Author Robert Sims
Publisher American Mathematical Soc.
Pages 234
Release 2011-09-02
Genre Mathematics
ISBN 0821868985

Download Entropy and the Quantum II Book in PDF, Epub and Kindle

The goal of the Entropy and the Quantum schools has been to introduce young researchers to some of the exciting current topics in mathematical physics. These topics often involve analytic techniques that can easily be understood with a dose of physical intuition. In March of 2010, four beautiful lectures were delivered on the campus of the University of Arizona. They included Isoperimetric Inequalities for Eigenvalues of the Laplacian by Rafael Benguria, Universality of Wigner Random Matrices by Laszlo Erdos, Kinetic Theory and the Kac Master Equation by Michael Loss, and Localization in Disordered Media by Gunter Stolz. Additionally, there were talks by other senior scientists and a number of interesting presentations by junior participants. The range of the subjects and the enthusiasm of the young speakers are testimony to the great vitality of this field, and the lecture notes in this volume reflect well the diversity of this school.

Direct and Inverse Scattering for the Matrix Schrödinger Equation

Direct and Inverse Scattering for the Matrix Schrödinger Equation
Title Direct and Inverse Scattering for the Matrix Schrödinger Equation PDF eBook
Author Tuncay Aktosun
Publisher Springer Nature
Pages 631
Release 2020-05-19
Genre Mathematics
ISBN 3030384314

Download Direct and Inverse Scattering for the Matrix Schrödinger Equation Book in PDF, Epub and Kindle

Authored by two experts in the field who have been long-time collaborators, this monograph treats the scattering and inverse scattering problems for the matrix Schrödinger equation on the half line with the general selfadjoint boundary condition. The existence, uniqueness, construction, and characterization aspects are treated with mathematical rigor, and physical insight is provided to make the material accessible to mathematicians, physicists, engineers, and applied scientists with an interest in scattering and inverse scattering. The material presented is expected to be useful to beginners as well as experts in the field. The subject matter covered is expected to be interesting to a wide range of researchers including those working in quantum graphs and scattering on graphs. The theory presented is illustrated with various explicit examples to improve the understanding of scattering and inverse scattering problems. The monograph introduces a specific class of input data sets consisting of a potential and a boundary condition and a specific class of scattering data sets consisting of a scattering matrix and bound-state information. The important problem of the characterization is solved by establishing a one-to-one correspondence between the two aforementioned classes. The characterization result is formulated in various equivalent forms, providing insight and allowing a comparison of different techniques used to solve the inverse scattering problem. The past literature treated the type of boundary condition as a part of the scattering data used as input to recover the potential. This monograph provides a proper formulation of the inverse scattering problem where the type of boundary condition is no longer a part of the scattering data set, but rather both the potential and the type of boundary condition are recovered from the scattering data set.