Iwasawa Theory 2012

Iwasawa Theory 2012
Title Iwasawa Theory 2012 PDF eBook
Author Thanasis Bouganis
Publisher Springer
Pages 487
Release 2014-12-08
Genre Mathematics
ISBN 3642552455

Download Iwasawa Theory 2012 Book in PDF, Epub and Kindle

This is the fifth conference in a bi-annual series, following conferences in Besancon, Limoges, Irsee and Toronto. The meeting aims to bring together different strands of research in and closely related to the area of Iwasawa theory. During the week before the conference in a kind of summer school a series of preparatory lectures for young mathematicians was provided as an introduction to Iwasawa theory. Iwasawa theory is a modern and powerful branch of number theory and can be traced back to the Japanese mathematician Kenkichi Iwasawa, who introduced the systematic study of Z_p-extensions and p-adic L-functions, concentrating on the case of ideal class groups. Later this would be generalized to elliptic curves. Over the last few decades considerable progress has been made in automorphic Iwasawa theory, e.g. the proof of the Main Conjecture for GL(2) by Kato and Skinner & Urban. Techniques such as Hida’s theory of p-adic modular forms and big Galois representations play a crucial part. Also a noncommutative Iwasawa theory of arbitrary p-adic Lie extensions has been developed. This volume aims to present a snapshot of the state of art of Iwasawa theory as of 2012. In particular it offers an introduction to Iwasawa theory (based on a preparatory course by Chris Wuthrich) and a survey of the proof of Skinner & Urban (based on a lecture course by Xin Wan).

Number Theory

Number Theory
Title Number Theory PDF eBook
Author Kazuya Kato
Publisher American Mathematical Soc.
Pages 243
Release 2000
Genre Class field theory
ISBN 0821820958

Download Number Theory Book in PDF, Epub and Kindle

Elliptic Curves, Modular Forms and Iwasawa Theory

Elliptic Curves, Modular Forms and Iwasawa Theory
Title Elliptic Curves, Modular Forms and Iwasawa Theory PDF eBook
Author David Loeffler
Publisher Springer
Pages 494
Release 2017-01-15
Genre Mathematics
ISBN 3319450328

Download Elliptic Curves, Modular Forms and Iwasawa Theory Book in PDF, Epub and Kindle

Celebrating one of the leading figures in contemporary number theory – John H. Coates – on the occasion of his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Several of the contributions in this volume were presented at the conference Elliptic Curves, Modular Forms and Iwasawa Theory, held in honour of the 70th birthday of John Coates in Cambridge, March 25-27, 2015. The main unifying theme is Iwasawa theory, a field that John Coates himself has done much to create. This collection is indispensable reading for researchers in Iwasawa theory, and is interesting and valuable for those in many related fields.

Introduction to Cyclotomic Fields

Introduction to Cyclotomic Fields
Title Introduction to Cyclotomic Fields PDF eBook
Author Lawrence C. Washington
Publisher Springer Science & Business Media
Pages 504
Release 2012-12-06
Genre Mathematics
ISBN 1461219345

Download Introduction to Cyclotomic Fields Book in PDF, Epub and Kindle

This text on a central area of number theory covers p-adic L-functions, class numbers, cyclotomic units, Fermat’s Last Theorem, and Iwasawa’s theory of Z_p-extensions. This edition contains a new chapter on the work of Thaine, Kolyvagin, and Rubin, including a proof of the Main Conjecture, as well as a chapter on other recent developments, such as primality testing via Jacobi sums and Sinnott’s proof of the vanishing of Iwasawa’s f-invariant.

Non-abelian Fundamental Groups and Iwasawa Theory

Non-abelian Fundamental Groups and Iwasawa Theory
Title Non-abelian Fundamental Groups and Iwasawa Theory PDF eBook
Author John Coates
Publisher Cambridge University Press
Pages 321
Release 2011-12-15
Genre Mathematics
ISBN 1139505653

Download Non-abelian Fundamental Groups and Iwasawa Theory Book in PDF, Epub and Kindle

This book describes the interaction between several key aspects of Galois theory based on Iwasawa theory, fundamental groups and automorphic forms. These ideas encompass a large portion of mainstream number theory and ramifications that are of interest to graduate students and researchers in number theory, algebraic geometry, topology and physics.

Noncommutative Iwasawa Main Conjectures over Totally Real Fields

Noncommutative Iwasawa Main Conjectures over Totally Real Fields
Title Noncommutative Iwasawa Main Conjectures over Totally Real Fields PDF eBook
Author John Coates
Publisher Springer Science & Business Media
Pages 216
Release 2012-10-19
Genre Mathematics
ISBN 3642321992

Download Noncommutative Iwasawa Main Conjectures over Totally Real Fields Book in PDF, Epub and Kindle

The algebraic techniques developed by Kakde will almost certainly lead eventually to major progress in the study of congruences between automorphic forms and the main conjectures of non-commutative Iwasawa theory for many motives. Non-commutative Iwasawa theory has emerged dramatically over the last decade, culminating in the recent proof of the non-commutative main conjecture for the Tate motive over a totally real p-adic Lie extension of a number field, independently by Ritter and Weiss on the one hand, and Kakde on the other. The initial ideas for giving a precise formulation of the non-commutative main conjecture were discovered by Venjakob, and were then systematically developed in the subsequent papers by Coates-Fukaya-Kato-Sujatha-Venjakob and Fukaya-Kato. There was also parallel related work in this direction by Burns and Flach on the equivariant Tamagawa number conjecture. Subsequently, Kato discovered an important idea for studying the K_1 groups of non-abelian Iwasawa algebras in terms of the K_1 groups of the abelian quotients of these Iwasawa algebras. Kakde's proof is a beautiful development of these ideas of Kato, combined with an idea of Burns, and essentially reduces the study of the non-abelian main conjectures to abelian ones. The approach of Ritter and Weiss is more classical, and partly inspired by techniques of Frohlich and Taylor. Since many of the ideas in this book should eventually be applicable to other motives, one of its major aims is to provide a self-contained exposition of some of the main general themes underlying these developments. The present volume will be a valuable resource for researchers working in both Iwasawa theory and the theory of automorphic forms.

Cyclotomic Fields I and II

Cyclotomic Fields I and II
Title Cyclotomic Fields I and II PDF eBook
Author Serge Lang
Publisher Springer Science & Business Media
Pages 449
Release 2012-12-06
Genre Mathematics
ISBN 1461209870

Download Cyclotomic Fields I and II Book in PDF, Epub and Kindle

Kummer's work on cyclotomic fields paved the way for the development of algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, Takagi, Artin and others. However, the success of this general theory has tended to obscure special facts proved by Kummer about cyclotomic fields which lie deeper than the general theory. For a long period in the 20th century this aspect of Kummer's work seems to have been largely forgotten, except for a few papers, among which are those by Pollaczek [Po], Artin-Hasse [A-H] and Vandiver [Va]. In the mid 1950's, the theory of cyclotomic fields was taken up again by Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues for number fields of the constant field extensions of algebraic geometry, and wrote a great sequence of papers investigating towers of cyclotomic fields, and more generally, Galois extensions of number fields whose Galois group is isomorphic to the additive group of p-adic integers. Leopoldt concentrated on a fixed cyclotomic field, and established various p-adic analogues of the classical complex analytic class number formulas. In particular, this led him to introduce, with Kubota, p-adic analogues of the complex L-functions attached to cyclotomic extensions of the rationals. Finally, in the late 1960's, Iwasawa [Iw 11] made the fundamental discovery that there was a close connection between his work on towers of cyclotomic fields and these p-adic L-functions of Leopoldt - Kubota.