Iterative Methods for Sparse Linear Systems
Title | Iterative Methods for Sparse Linear Systems PDF eBook |
Author | Yousef Saad |
Publisher | SIAM |
Pages | 537 |
Release | 2003-04-01 |
Genre | Mathematics |
ISBN | 0898715342 |
Mathematics of Computing -- General.
Direct Methods for Sparse Linear Systems
Title | Direct Methods for Sparse Linear Systems PDF eBook |
Author | Timothy A. Davis |
Publisher | SIAM |
Pages | 228 |
Release | 2006-09-01 |
Genre | Computers |
ISBN | 0898716136 |
The sparse backslash book. Everything you wanted to know but never dared to ask about modern direct linear solvers. Chen Greif, Assistant Professor, Department of Computer Science, University of British Columbia.Overall, the book is magnificent. It fills a long-felt need for an accessible textbook on modern sparse direct methods. Its choice of scope is excellent John Gilbert, Professor, Department of Computer Science, University of California, Santa Barbara.Computational scientists often encounter problems requiring the solution of sparse systems of linear equations. Attacking these problems efficiently requires an in-depth knowledge of the underlying theory, algorithms, and data structures found in sparse matrix software libraries. Here, Davis presents the fundamentals of sparse matrix algorithms to provide the requisite background. The book includes CSparse, a concise downloadable sparse matrix package that illustrates the algorithms and theorems presented in the book and equips readers with the tools necessary to understand larger and more complex software packages.With a strong emphasis on MATLAB and the C programming language, Direct Methods for Sparse Linear Systems equips readers with the working knowledge required to use sparse solver packages and write code to interface applications to those packages. The book also explains how MATLAB performs its sparse matrix computations.Audience This invaluable book is essential to computational scientists and software developers who want to understand the theory and algorithms behind modern techniques used to solve large sparse linear systems. The book also serves as an excellent practical resource for students with an interest in combinatorial scientific computing.Preface; Chapter 1: Introduction; Chapter 2: Basic algorithms; Chapter 3: Solving triangular systems; Chapter 4: Cholesky factorization; Chapter 5: Orthogonal methods; Chapter 6: LU factorization; Chapter 7: Fill-reducing orderings; Chapter 8: Solving sparse linear systems; Chapter 9: CSparse; Chapter 10: Sparse matrices in MATLAB; Appendix: Basics of the C programming language; Bibliography; Index.
Iterative Methods for Solving Linear Systems
Title | Iterative Methods for Solving Linear Systems PDF eBook |
Author | Anne Greenbaum |
Publisher | SIAM |
Pages | 225 |
Release | 1997-01-01 |
Genre | Mathematics |
ISBN | 089871396X |
Mathematics of Computing -- Numerical Analysis.
Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications
Title | Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications PDF eBook |
Author | Daniele Bertaccini |
Publisher | CRC Press |
Pages | 321 |
Release | 2018-02-19 |
Genre | Mathematics |
ISBN | 1351649612 |
This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.
Iterative Methods for Linear Systems
Title | Iterative Methods for Linear Systems PDF eBook |
Author | Maxim A. Olshanskii |
Publisher | SIAM |
Pages | 257 |
Release | 2014-07-21 |
Genre | Mathematics |
ISBN | 1611973465 |
Iterative Methods for Linear Systems?offers a mathematically rigorous introduction to fundamental iterative methods for systems of linear algebraic equations. The book distinguishes itself from other texts on the topic by providing a straightforward yet comprehensive analysis of the Krylov subspace methods, approaching the development and analysis of algorithms from various algorithmic and mathematical perspectives, and going beyond the standard description of iterative methods by connecting them in a natural way to the idea of preconditioning.??
Applied Iterative Methods
Title | Applied Iterative Methods PDF eBook |
Author | Louis A. Hageman |
Publisher | Elsevier |
Pages | 409 |
Release | 2014-06-28 |
Genre | Mathematics |
ISBN | 1483294374 |
Applied Iterative Methods
Templates for the Solution of Linear Systems
Title | Templates for the Solution of Linear Systems PDF eBook |
Author | Richard Barrett |
Publisher | SIAM |
Pages | 141 |
Release | 1994-01-01 |
Genre | Mathematics |
ISBN | 9781611971538 |
In this book, which focuses on the use of iterative methods for solving large sparse systems of linear equations, templates are introduced to meet the needs of both the traditional user and the high-performance specialist. Templates, a description of a general algorithm rather than the executable object or source code more commonly found in a conventional software library, offer whatever degree of customization the user may desire. Templates offer three distinct advantages: they are general and reusable; they are not language specific; and they exploit the expertise of both the numerical analyst, who creates a template reflecting in-depth knowledge of a specific numerical technique, and the computational scientist, who then provides "value-added" capability to the general template description, customizing it for specific needs. For each template that is presented, the authors provide: a mathematical description of the flow of algorithm; discussion of convergence and stopping criteria to use in the iteration; suggestions for applying a method to special matrix types; advice for tuning the template; tips on parallel implementations; and hints as to when and why a method is useful.