Issues in Statistics, Decision Making, and Stochastics: 2011 Edition
Title | Issues in Statistics, Decision Making, and Stochastics: 2011 Edition PDF eBook |
Author | |
Publisher | ScholarlyEditions |
Pages | 288 |
Release | 2012-01-09 |
Genre | Mathematics |
ISBN | 1464967059 |
Issues in Statistics, Decision Making, and Stochastics: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Statistics, Decision Making, and Stochastics. The editors have built Issues in Statistics, Decision Making, and Stochastics: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Statistics, Decision Making, and Stochastics in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Statistics, Decision Making, and Stochastics: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Issues in Statistics, Decision Making, and Stochastics: 2012 Edition
Title | Issues in Statistics, Decision Making, and Stochastics: 2012 Edition PDF eBook |
Author | |
Publisher | ScholarlyEditions |
Pages | 69 |
Release | 2013-01-10 |
Genre | Mathematics |
ISBN | 1481648519 |
Issues in Statistics, Decision Making, and Stochastics: 2012 Edition is a ScholarlyBrief™ that delivers timely, authoritative, comprehensive, and specialized information about Statistics in a concise format. The editors have built Issues in Statistics, Decision Making, and Stochastics: 2012 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Statistics in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Statistics, Decision Making, and Stochastics: 2012 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Issues in Statistics, Decision Making, and Stochastics: 2013 Edition
Title | Issues in Statistics, Decision Making, and Stochastics: 2013 Edition PDF eBook |
Author | |
Publisher | ScholarlyEditions |
Pages | 314 |
Release | 2013-05-01 |
Genre | Mathematics |
ISBN | 1490110828 |
Issues in Statistics, Decision Making, and Stochastics: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Regular and Chaotic Dynamics. The editors have built Issues in Statistics, Decision Making, and Stochastics: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Regular and Chaotic Dynamics in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Statistics, Decision Making, and Stochastics: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.
Statistics for Business
Title | Statistics for Business PDF eBook |
Author | Robert Stine |
Publisher | Pearson |
Pages | 867 |
Release | 2015-08-17 |
Genre | Business & Economics |
ISBN | 013442445X |
In Statistics for Business: Decision Making and Analysis, authors Robert Stine and Dean Foster of the University of Pennsylvania’s Wharton School, take a sophisticated approach to teaching statistics in the context of making good business decisions. The authors show students how to recognize and understand each business question, use statistical tools to do the analysis, and how to communicate their results clearly and concisely. In addition to providing cases and real data to demonstrate real business situations, this text provides resources to support understanding and engagement. A successful problem-solving framework in the 4-M Examples (Motivation, Method, Mechanics, Message) model a clear outline for solving problems, new What Do You Think questions give students an opportunity to stop and check their understanding as they read, and new learning objectives guide students through each chapter and help them to review major goals. Software Hints provide instructions for using the most up-to-date technology packages. The Second Edition also includes expanded coverage and instruction of Excel® 2010.
Theory of Stochastic Objects
Title | Theory of Stochastic Objects PDF eBook |
Author | Athanasios Christou Micheas |
Publisher | CRC Press |
Pages | 339 |
Release | 2018-01-19 |
Genre | Mathematics |
ISBN | 1466515228 |
This book defines and investigates the concept of a random object. To accomplish this task in a natural way, it brings together three major areas; statistical inference, measure-theoretic probability theory and stochastic processes. This point of view has not been explored by existing textbooks; one would need material on real analysis, measure and probability theory, as well as stochastic processes - in addition to at least one text on statistics- to capture the detail and depth of material that has gone into this volume. Presents and illustrates ‘random objects’ in different contexts, under a unified framework, starting with rudimentary results on random variables and random sequences, all the way up to stochastic partial differential equations. Reviews rudimentary probability and introduces statistical inference, from basic to advanced, thus making the transition from basic statistical modeling and estimation to advanced topics more natural and concrete. Compact and comprehensive presentation of the material that will be useful to a reader from the mathematics and statistical sciences, at any stage of their career, either as a graduate student, an instructor, or an academician conducting research and requiring quick references and examples to classic topics. Includes 378 exercises, with the solutions manual available on the book's website. 121 illustrative examples of the concepts presented in the text (many including multiple items in a single example). The book is targeted towards students at the master’s and Ph.D. levels, as well as, academicians in the mathematics, statistics and related disciplines. Basic knowledge of calculus and matrix algebra is required. Prior knowledge of probability or measure theory is welcomed but not necessary.
Reinforcement Learning and Stochastic Optimization
Title | Reinforcement Learning and Stochastic Optimization PDF eBook |
Author | Warren B. Powell |
Publisher | John Wiley & Sons |
Pages | 1090 |
Release | 2022-04-25 |
Genre | Mathematics |
ISBN | 1119815053 |
REINFORCEMENT LEARNING AND STOCHASTIC OPTIMIZATION Clearing the jungle of stochastic optimization Sequential decision problems, which consist of “decision, information, decision, information,” are ubiquitous, spanning virtually every human activity ranging from business applications, health (personal and public health, and medical decision making), energy, the sciences, all fields of engineering, finance, and e-commerce. The diversity of applications attracted the attention of at least 15 distinct fields of research, using eight distinct notational systems which produced a vast array of analytical tools. A byproduct is that powerful tools developed in one community may be unknown to other communities. Reinforcement Learning and Stochastic Optimization offers a single canonical framework that can model any sequential decision problem using five core components: state variables, decision variables, exogenous information variables, transition function, and objective function. This book highlights twelve types of uncertainty that might enter any model and pulls together the diverse set of methods for making decisions, known as policies, into four fundamental classes that span every method suggested in the academic literature or used in practice. Reinforcement Learning and Stochastic Optimization is the first book to provide a balanced treatment of the different methods for modeling and solving sequential decision problems, following the style used by most books on machine learning, optimization, and simulation. The presentation is designed for readers with a course in probability and statistics, and an interest in modeling and applications. Linear programming is occasionally used for specific problem classes. The book is designed for readers who are new to the field, as well as those with some background in optimization under uncertainty. Throughout this book, readers will find references to over 100 different applications, spanning pure learning problems, dynamic resource allocation problems, general state-dependent problems, and hybrid learning/resource allocation problems such as those that arose in the COVID pandemic. There are 370 exercises, organized into seven groups, ranging from review questions, modeling, computation, problem solving, theory, programming exercises and a "diary problem" that a reader chooses at the beginning of the book, and which is used as a basis for questions throughout the rest of the book.
Introduction to Stochastic Programming
Title | Introduction to Stochastic Programming PDF eBook |
Author | John R. Birge |
Publisher | Springer Science & Business Media |
Pages | 427 |
Release | 2006-04-06 |
Genre | Mathematics |
ISBN | 0387226184 |
This rapidly developing field encompasses many disciplines including operations research, mathematics, and probability. Conversely, it is being applied in a wide variety of subjects ranging from agriculture to financial planning and from industrial engineering to computer networks. This textbook provides a first course in stochastic programming suitable for students with a basic knowledge of linear programming, elementary analysis, and probability. The authors present a broad overview of the main themes and methods of the subject, thus helping students develop an intuition for how to model uncertainty into mathematical problems, what uncertainty changes bring to the decision process, and what techniques help to manage uncertainty in solving the problems. The early chapters introduce some worked examples of stochastic programming, demonstrate how a stochastic model is formally built, develop the properties of stochastic programs and the basic solution techniques used to solve them. The book then goes on to cover approximation and sampling techniques and is rounded off by an in-depth case study. A well-paced and wide-ranging introduction to this subject.