Regularity Theory for Mean Curvature Flow

Regularity Theory for Mean Curvature Flow
Title Regularity Theory for Mean Curvature Flow PDF eBook
Author Klaus Ecker
Publisher Springer Science & Business Media
Pages 173
Release 2012-12-06
Genre Mathematics
ISBN 0817682104

Download Regularity Theory for Mean Curvature Flow Book in PDF, Epub and Kindle

* Devoted to the motion of surfaces for which the normal velocity at every point is given by the mean curvature at that point; this geometric heat flow process is called mean curvature flow. * Mean curvature flow and related geometric evolution equations are important tools in mathematics and mathematical physics.

Selected Works of Frederick J. Almgren, Jr.

Selected Works of Frederick J. Almgren, Jr.
Title Selected Works of Frederick J. Almgren, Jr. PDF eBook
Author Frederick J. Almgren
Publisher American Mathematical Soc.
Pages 638
Release 1999
Genre Mathematics
ISBN 9780821810675

Download Selected Works of Frederick J. Almgren, Jr. Book in PDF, Epub and Kindle

This volume offers a unique collection of some of the work of Frederick J. Almgren, Jr., the man most noted for defining the shape of geometric variational problems and for his role in founding The Geometry Center. Included in the volume are the following: a summary by Sheldon Chang of the famous 1700 page paper on singular sets of area-minimizing $m$-dimensional surfaces in $Rn$, a detailed summary by Brian White of Almgren's contributions to mathematics, his own announcements of several longer papers, important shorter papers, and memorable expository papers. Almgren's enthusiasm for the subject and his ability to locate mathematically beautiful problems that were "ready to be solved" attracted many students who further expanded the subject into new areas. Many of these former students are now known for the clarity of their expositions and for the beauty of the problems that they work on. As Almgren's former graduate student, wife, and colleague, Professor Taylor has compiled an important volume on an extraordinary mathematician. This collection presents a fine comprehensive view of the man's mathematical legacy

Isoperimetric Inequalities and Applications

Isoperimetric Inequalities and Applications
Title Isoperimetric Inequalities and Applications PDF eBook
Author Catherine Bandle
Publisher Pitman Publishing
Pages 248
Release 1980
Genre Mathematics
ISBN

Download Isoperimetric Inequalities and Applications Book in PDF, Epub and Kindle

Isoperimetric Inequalities in Riemannian Manifolds

Isoperimetric Inequalities in Riemannian Manifolds
Title Isoperimetric Inequalities in Riemannian Manifolds PDF eBook
Author Manuel Ritoré
Publisher Springer Nature
Pages 470
Release 2023-10-06
Genre Mathematics
ISBN 3031379012

Download Isoperimetric Inequalities in Riemannian Manifolds Book in PDF, Epub and Kindle

This work gives a coherent introduction to isoperimetric inequalities in Riemannian manifolds, featuring many of the results obtained during the last 25 years and discussing different techniques in the area. Written in a clear and appealing style, the book includes sufficient introductory material, making it also accessible to graduate students. It will be of interest to researchers working on geometric inequalities either from a geometric or analytic point of view, but also to those interested in applying the described techniques to their field.

Topics in Modern Differential Geometry

Topics in Modern Differential Geometry
Title Topics in Modern Differential Geometry PDF eBook
Author Stefan Haesen
Publisher Springer
Pages 289
Release 2016-12-21
Genre Mathematics
ISBN 9462392404

Download Topics in Modern Differential Geometry Book in PDF, Epub and Kindle

A variety of introductory articles is provided on a wide range of topics, including variational problems on curves and surfaces with anisotropic curvature. Experts in the fields of Riemannian, Lorentzian and contact geometry present state-of-the-art reviews of their topics. The contributions are written on a graduate level and contain extended bibliographies. The ten chapters are the result of various doctoral courses which were held in 2009 and 2010 at universities in Leuven, Serbia, Romania and Spain.

Calculus of Variations and Geometric Evolution Problems

Calculus of Variations and Geometric Evolution Problems
Title Calculus of Variations and Geometric Evolution Problems PDF eBook
Author F. Bethuel
Publisher Springer
Pages 299
Release 2006-11-14
Genre Mathematics
ISBN 3540488138

Download Calculus of Variations and Geometric Evolution Problems Book in PDF, Epub and Kindle

The international summer school on Calculus of Variations and Geometric Evolution Problems was held at Cetraro, Italy, 1996. The contributions to this volume reflect quite closely the lectures given at Cetraro which have provided an image of a fairly broad field in analysis where in recent years we have seen many important contributions. Among the topics treated in the courses were variational methods for Ginzburg-Landau equations, variational models for microstructure and phase transitions, a variational treatment of the Plateau problem for surfaces of prescribed mean curvature in Riemannian manifolds - both from the classical point of view and in the setting of geometric measure theory.

Nonlinear Analysis on Manifolds. Monge-Ampère Equations

Nonlinear Analysis on Manifolds. Monge-Ampère Equations
Title Nonlinear Analysis on Manifolds. Monge-Ampère Equations PDF eBook
Author Thierry Aubin
Publisher Springer Science & Business Media
Pages 215
Release 2012-12-06
Genre Mathematics
ISBN 1461257344

Download Nonlinear Analysis on Manifolds. Monge-Ampère Equations Book in PDF, Epub and Kindle

This volume is intended to allow mathematicians and physicists, especially analysts, to learn about nonlinear problems which arise in Riemannian Geometry. Analysis on Riemannian manifolds is a field currently undergoing great development. More and more, analysis proves to be a very powerful means for solving geometrical problems. Conversely, geometry may help us to solve certain problems in analysis. There are several reasons why the topic is difficult and interesting. It is very large and almost unexplored. On the other hand, geometric problems often lead to limiting cases of known problems in analysis, sometimes there is even more than one approach, and the already existing theoretical studies are inadequate to solve them. Each problem has its own particular difficulties. Nevertheless there exist some standard methods which are useful and which we must know to apply them. One should not forget that our problems are motivated by geometry, and that a geometrical argument may simplify the problem under investigation. Examples of this kind are still too rare. This work is neither a systematic study of a mathematical field nor the presentation of a lot of theoretical knowledge. On the contrary, I do my best to limit the text to the essential knowledge. I define as few concepts as possible and give only basic theorems which are useful for our topic. But I hope that the reader will find this sufficient to solve other geometrical problems by analysis.