Ion-Irradiation-Induced Damage in Nuclear Materials

Ion-Irradiation-Induced Damage in Nuclear Materials
Title Ion-Irradiation-Induced Damage in Nuclear Materials PDF eBook
Author Diana Bachiller Perea
Publisher Springer
Pages 191
Release 2018-09-26
Genre Technology & Engineering
ISBN 3030004074

Download Ion-Irradiation-Induced Damage in Nuclear Materials Book in PDF, Epub and Kindle

This thesis investigates the behavior of two candidate materials (a-SiO2 and MgO) for applications in fusion (e.g., the International Thermonuclear Experimental Reactor ITER) and Generation IV fission reactors. Both parts of the thesis – the development of the ionoluminescence technique and the study of the ion-irradiation effects on both materials – are highly relevant for the fields of the ion-beam analysis techniques and irradiation damage in materials. The research presented determines the microstructural changes at different length scales in these materials under ion irradiation. In particular, it studies the effect of the irradiation temperature using several advanced characterization techniques. It also provides much-needed insights into the use of these materials at elevated temperatures. Further, it discusses the development of the ion-beam-induced luminescence technique in different research facilities around the globe, a powerful in situ spectroscopic characterization method that until now was little known. Thanks to its relevance, rigorosity and quality, this thesis has received twoprestigious awards in Spain and France.

Radiation Damage in Materials

Radiation Damage in Materials
Title Radiation Damage in Materials PDF eBook
Author Yongqiang Wang
Publisher MDPI
Pages 196
Release 2020-12-28
Genre Science
ISBN 303936362X

Download Radiation Damage in Materials Book in PDF, Epub and Kindle

The complexity of radiation damage effects in materials that are used in various irradiation environments stems from the fundamental particle–solid interactions and the subsequent damage recovery dynamics after the collision cascades, which involves multiple length and time scales. Adding to this complexity are the transmuted impurities that are unavoidable from accompanying nuclear processes. Helium is one such impurity that plays an important and unique role in controlling the microstructure and properties of materials used in fast fission reactors, plasma-facing and structural materials in fusion devices, spallation neutron target designs, actinides, tritium-containing materials, and nuclear waste. Their ultra-low solubility in virtually all solids forces He atoms to self-precipitate into small bubbles that become nucleation sites for further void growth under radiation-induced vacancy supersaturations, resulting in material swelling and high-temperature He embrittlement, as well as surface blistering under low-energy and high-flux He bombardment. This Special Issue, “Radiation Damage in Materials—Helium Effects”, contains review articles and full-length papers on new irradiation material research activities and novel material ideas using experimental and/or modeling approaches. These studies elucidate the interactions of helium with various extreme environments and tailored nanostructures, as well as their impact on microstructural evolution and material properties.

Fundamentals of Radiation Materials Science

Fundamentals of Radiation Materials Science
Title Fundamentals of Radiation Materials Science PDF eBook
Author GARY S. WAS
Publisher Springer
Pages 1014
Release 2016-07-08
Genre Technology & Engineering
ISBN 1493934384

Download Fundamentals of Radiation Materials Science Book in PDF, Epub and Kindle

The revised second edition of this established text offers readers a significantly expanded introduction to the effects of radiation on metals and alloys. It describes the various processes that occur when energetic particles strike a solid, inducing changes to the physical and mechanical properties of the material. Specifically it covers particle interaction with the metals and alloys used in nuclear reactor cores and hence subject to intense radiation fields. It describes the basics of particle-atom interaction for a range of particle types, the amount and spatial extent of the resulting radiation damage, the physical effects of irradiation and the changes in mechanical behavior of irradiated metals and alloys. Updated throughout, some major enhancements for the new edition include improved treatment of low- and intermediate-energy elastic collisions and stopping power, expanded sections on molecular dynamics and kinetic Monte Carlo methodologies describing collision cascade evolution, new treatment of the multi-frequency model of diffusion, numerous examples of RIS in austenitic and ferritic-martensitic alloys, expanded treatment of in-cascade defect clustering, cluster evolution, and cluster mobility, new discussion of void behavior near grain boundaries, a new section on ion beam assisted deposition, and reorganization of hardening, creep and fracture of irradiated materials (Chaps 12-14) to provide a smoother and more integrated transition between the topics. The book also contains two new chapters. Chapter 15 focuses on the fundamentals of corrosion and stress corrosion cracking, covering forms of corrosion, corrosion thermodynamics, corrosion kinetics, polarization theory, passivity, crevice corrosion, and stress corrosion cracking. Chapter 16 extends this treatment and considers the effects of irradiation on corrosion and environmentally assisted corrosion, including the effects of irradiation on water chemistry and the mechanisms of irradiation-induced stress corrosion cracking. The book maintains the previous style, concepts are developed systematically and quantitatively, supported by worked examples, references for further reading and end-of-chapter problem sets. Aimed primarily at students of materials sciences and nuclear engineering, the book will also provide a valuable resource for academic and industrial research professionals. Reviews of the first edition: "...nomenclature, problems and separate bibliography at the end of each chapter allow to the reader to reach a straightforward understanding of the subject, part by part. ... this book is very pleasant to read, well documented and can be seen as a very good introduction to the effects of irradiation on matter, or as a good references compilation for experimented readers." - Pauly Nicolas, Physicalia Magazine, Vol. 30 (1), 2008 “The text provides enough fundamental material to explain the science and theory behind radiation effects in solids, but is also written at a high enough level to be useful for professional scientists. Its organization suits a graduate level materials or nuclear science course... the text was written by a noted expert and active researcher in the field of radiation effects in metals, the selection and organization of the material is excellent... may well become a necessary reference for graduate students and researchers in radiation materials science.” - L.M. Dougherty, 07/11/2008, JOM, the Member Journal of The Minerals, Metals and Materials Society.

Thin Film Analysis by X-Ray Scattering

Thin Film Analysis by X-Ray Scattering
Title Thin Film Analysis by X-Ray Scattering PDF eBook
Author Mario Birkholz
Publisher John Wiley & Sons
Pages 378
Release 2006-05-12
Genre Technology & Engineering
ISBN 3527607048

Download Thin Film Analysis by X-Ray Scattering Book in PDF, Epub and Kindle

With contributions by Paul F. Fewster and Christoph Genzel While X-ray diffraction investigation of powders and polycrystalline matter was at the forefront of materials science in the 1960s and 70s, high-tech applications at the beginning of the 21st century are driven by the materials science of thin films. Very much an interdisciplinary field, chemists, biochemists, materials scientists, physicists and engineers all have a common interest in thin films and their manifold uses and applications. Grain size, porosity, density, preferred orientation and other properties are important to know: whether thin films fulfill their intended function depends crucially on their structure and morphology once a chemical composition has been chosen. Although their backgrounds differ greatly, all the involved specialists a profound understanding of how structural properties may be determined in order to perform their respective tasks in search of new and modern materials, coatings and functions. The author undertakes this in-depth introduction to the field of thin film X-ray characterization in a clear and precise manner.

Handbook of Generation IV Nuclear Reactors

Handbook of Generation IV Nuclear Reactors
Title Handbook of Generation IV Nuclear Reactors PDF eBook
Author Igor Pioro
Publisher Woodhead Publishing
Pages 1112
Release 2022-12-07
Genre Technology & Engineering
ISBN 0128226536

Download Handbook of Generation IV Nuclear Reactors Book in PDF, Epub and Kindle

Handbook of Generation IV Nuclear Reactors, Second Edition is a fully revised and updated comprehensive resource on the latest research and advances in generation IV nuclear reactor concepts. Editor Igor Pioro and his team of expert contributors have updated every chapter to reflect advances in the field since the first edition published in 2016. The book teaches the reader about available technologies, future prospects and the feasibility of each concept presented, equipping them users with a strong skillset which they can apply to their own work and research. - Provides a fully updated, revised and comprehensive handbook dedicated entirely to generation IV nuclear reactors - Includes new trends and developments since the first publication, as well as brand new case studies and appendices - Covers the latest research, developments and design information surrounding generation IV nuclear reactors

Ion Beam Modification of Solids

Ion Beam Modification of Solids
Title Ion Beam Modification of Solids PDF eBook
Author Werner Wesch
Publisher Springer
Pages 547
Release 2016-07-14
Genre Science
ISBN 3319335618

Download Ion Beam Modification of Solids Book in PDF, Epub and Kindle

This book presents the method of ion beam modification of solids in realization, theory and applications in a comprehensive way. It provides a review of the physical basics of ion-solid interaction and on ion-beam induced structural modifications of solids. Ion beams are widely used to modify the physical properties of materials. A complete theory of ion stopping in matter and the calculation of the energy loss due to nuclear and electronic interactions are presented including the effect of ion channeling. To explain structural modifications due to high electronic excitations, different concepts are presented with special emphasis on the thermal spike model. Furthermore, general concepts of damage evolution as a function of ion mass, ion fluence, ion flux and temperature are described in detail and their limits and applicability are discussed. The effect of nuclear and electronic energy loss on structural modifications of solids such as damage formation, phase transitions and amorphization is reviewed for insulators and semiconductors. Finally some selected applications of ion beams are given.

Zirconium in the Nuclear Industry

Zirconium in the Nuclear Industry
Title Zirconium in the Nuclear Industry PDF eBook
Author George P. Sabol
Publisher ASTM International
Pages 907
Release 1996
Genre Nuclear fuel claddings
ISBN 0803124066

Download Zirconium in the Nuclear Industry Book in PDF, Epub and Kindle