Ion Channels and Disease
Title | Ion Channels and Disease PDF eBook |
Author | Frances M. Ashcroft |
Publisher | Academic Press |
Pages | 526 |
Release | 2000 |
Genre | Medical |
ISBN |
Ion channels are membrane proteins that act as gated pathways for the movement of ions across cell membranes. They play essential roles in the physiology of all cells. In recent years, an ever-increasing number of human and animal diseases have been found to result from defects in ion channel function. Most of these diseases arise from mutations in the genes encoding ion channel proteins, and they are now referred to as the channelopathies. Ion Channels and Disease provides an informative and up-to-date account of our present understanding of ion channels and the molecular basis of ion channel diseases. It includes a basic introduction to the relevant aspects of molecular biology and biophysics and a brief description of the principal methods used to study channelopathies. For each channel, the relationship between its molecular structure and its functional properties is discussed and ways in which genetic mutations produce the disease phenotype are considered. This book is intended for research workers and clinicians, as well as graduates and advanced undergraduates. The text is clear and lively and assumes little knowledge, yet it takes the reader to frontiers of what is currently known about this most exciting and medically important area of physiology. Introduces the relevant aspects of molecular biology and biophysics Describes the principal methods used to study channelopathies Considers single classes of ion channels with summaries of the physiological role, subunit composition, molecular structure and chromosomal location, plus the relationship between channel structure and function Looks at those diseases associated with defective channel structures and regulation, including mutations affecting channel function and to what extent this change in channel function can account for the clinical phenotype
Ion Channel Diseases
Title | Ion Channel Diseases PDF eBook |
Author | |
Publisher | Academic Press |
Pages | 168 |
Release | 2011-09-06 |
Genre | Science |
ISBN | 0080923100 |
Ion channel dysfunction in humans leads to impairment of the excitable processes necessary for the normal function of several tissues, such as muscle and brain. It follows that an increasing number of human diseases have been associated with malfunctioning ion channels, many of which have a genetic component. This volume of Advances in Genetics presents a broad and comprehensive overview of the inherited channelopathies in humans, including clinical, genetic and molecular aspects of these conditions. Keeping true to the scope of the serial, novel genomic and modeling research approaches and a review of potential therapeutic approaches for each of these conditions are also incorporated.
Handbook of Ion Channels
Title | Handbook of Ion Channels PDF eBook |
Author | Jie Zheng |
Publisher | CRC Press |
Pages | 682 |
Release | 2015-02-25 |
Genre | Medical |
ISBN | 1466551429 |
The New Benchmark for Understanding the Latest Developments of Ion ChannelsIon channels control the electrical properties of neurons and cardiac cells, mediate the detection and response to sensory stimuli, and regulate the response to physical stimuli. They can often interact with the cellular environment due to their location at the surface of ce
Molecular Biology of the Cell
Title | Molecular Biology of the Cell PDF eBook |
Author | |
Publisher | |
Pages | 0 |
Release | 2002 |
Genre | Cells |
ISBN | 9780815332183 |
Ion Channels
Title | Ion Channels PDF eBook |
Author | James N. C. Kew |
Publisher | |
Pages | 586 |
Release | 2010 |
Genre | Medical |
ISBN | 0199296758 |
Ion channels are intimately involved in the everyday physiological functions that enable us to live a full and varied life. When disease strikes, malfunction of ion channels or their dependent is often involved, either as the cause or the effect of the illness. Thus, billions of dollars have been, and still are being, invested in research to understand the physiological and pathophysiological functions of ion channels in an attempt to develop novel therapeutic treatments for a wide range of diseases. This book provides a comprehensive overview of ion channel structure and function. It comprises two major parts. Part one is an introductory overview of the ion channel superfamily and the generic aspects of ion channel function. This part also reviews the methodologies by which ion channel function can be studied from the perspective of performing detailed biophysical characterization through to the deployment of high throughput approaches for identifying novel ion channel ligands. Part two of the book provides an in-depth review of the individual ion channel subfamilies and, as such, is subdivided into four broad sections: Voltage-Gated Ion Channels, Extracellular Ligand-Gated Ion Channels, Intracellular Ligand-Gated Ion Channels, and Polymodal-Gated Ion Channels, with each chapter focused on specific family members. These chapters have been written by world leading experts and provide a detailed overview of the structure, biophysics, localization, pharmacology, physiology, and disease relevance of each particular ion channel subfamily. Reviewing both the basic principles of ion channel function and providing a detailed up-to-date review of the phsyiological and pharmacological aspects of individual ion channel sub-families, this book constitutes both an excellent introduction to the field for non-specialists, as well as a highly valuable reference text for experienced researchers already working in the ion channel area.
Ion Channel Drug Discovery
Title | Ion Channel Drug Discovery PDF eBook |
Author | Brian Cox |
Publisher | Royal Society of Chemistry |
Pages | 385 |
Release | 2014-09-03 |
Genre | Science |
ISBN | 1849735085 |
Ion channel drug discovery is a rapidly evolving field fuelled by recent, but significant, advances in our understanding of ion channel function combined with enabling technologies such as automated electrophysiology. The resurgent interest in this target class by both pharmaceutical and academic scientists was clearly highlighted by the over-subscribed RSC/BPS 'Ion Channels as Therapeutic Targets' symposium in February 2009. This book builds on the platform created by that meeting, covering themes including advances in screening technology, ion channel structure and modelling and up-to-date case histories of the discovery of modulators of a range of channels, both voltage-gated and non-voltage-gated channels. The editors have built an extensive network of contacts in the field through their first-hand scientific experience, collaborations and conference participation and the organisation of the meeting at Novartis, Horsham, increased the network enabling the editors to draw on the experience of eminent researchers in the field. Interest and investment in ion channel modulation in both industrial and academic settings continues to grow as new therapeutic opportunities are identified and realised for ion channel modulation. This book provides a reference text by covering a combination of recent advances in the field, from technological and medicinal chemistry perspectives, as well as providing an introduction to the new 'ion channel drug discoverer'. The book has contributions from highly respected academic researchers, industrial researchers at the cutting edge of drug discovery and experts in enabling technology. This combination provides a complete picture of the field of interest to a wide range of readers.
Voltage-gated Sodium Channels: Structure, Function and Channelopathies
Title | Voltage-gated Sodium Channels: Structure, Function and Channelopathies PDF eBook |
Author | Mohamed Chahine |
Publisher | Springer |
Pages | 448 |
Release | 2018-06-04 |
Genre | Medical |
ISBN | 3319902849 |
This book provides a timely state-of-the-art overview of voltage-gated sodium channels, their structure-function, their pharmacology and related diseases. Among the topics discussed are the structural basis of Na+ channel function, methodological advances in the study of Na+ channels, their pathophysiology and drugs and toxins interactions with these channels and their associated channelopathies.