Fast Ion-atom and Ion-molecule Collisions

Fast Ion-atom and Ion-molecule Collisions
Title Fast Ion-atom and Ion-molecule Collisions PDF eBook
Author Dzevad Belkic
Publisher World Scientific
Pages 335
Release 2013
Genre Science
ISBN 9814407135

Download Fast Ion-atom and Ion-molecule Collisions Book in PDF, Epub and Kindle

The principal goal of this book is to provide state-of-the-art coverage of the non-relativistic three- and four-body theories at intermediate and high energy ion-atom and ion-molecule collisions. The focus is on the most frequently studied processes: electron capture, ionization, transfer excitation and transfer ionization. The content is suitable both for graduate students and experienced researchers. For these collisions, the literature has seen enormous renewal of activity in the development and applications of quantum-mechanical theories. This subject is of relevance in several branches of science and technology, like accelerator-based physics, the search for new sources of energy and high temperature fusion of light ions. Other important applications are in life sciences via medicine, where high-energy ion beams are used in radiotherapy for which a number of storage ring accelerators are in full operation, under construction or planned to be built worldwide. Therefore, it is necessary to review this field for its most recent advances with an emphasis on the prospects for multidisciplinary applications.This book is accompanied by Interdisciplinary Research on Particle Collisions and Quantitative Spectroscopy Volume 2 - Fast Collisions of Light Ions with Matter: Charge Exchange and Ionization.

Electron Emission in Heavy Ion-Atom Collisions

Electron Emission in Heavy Ion-Atom Collisions
Title Electron Emission in Heavy Ion-Atom Collisions PDF eBook
Author Nikolaus Stolterfoht
Publisher Springer Science & Business Media
Pages 270
Release 1997-10-28
Genre Science
ISBN 9783540631842

Download Electron Emission in Heavy Ion-Atom Collisions Book in PDF, Epub and Kindle

This volume reviews the theoretical and experimental work about continuous electron emission in energetic ion-atom collisions over the last 30 years. General properties of the two-center electron emission are analyzed, and particular attention is given to screening effects. The book also offers an overview of multiple ionization processes.

Quantum Theory of High-Energy Ion-Atom Collisions

Quantum Theory of High-Energy Ion-Atom Collisions
Title Quantum Theory of High-Energy Ion-Atom Collisions PDF eBook
Author Dzevad Belkic
Publisher CRC Press
Pages 0
Release 2008-11-13
Genre Science
ISBN 9781584887287

Download Quantum Theory of High-Energy Ion-Atom Collisions Book in PDF, Epub and Kindle

One of the Top Selling Physics Books according to YBP Library Services Suitable for graduate students, experienced researchers, and experts, this book provides a state-of-the-art review of the non-relativistic theory of high-energy ion-atom collisions. Special attention is paid to four-body interactive dynamics through the most important theoretical methods available to date by critically analyzing their foundation and practical usefulness relative to virtually all the relevant experimental data. Fast ion-atom collisions are of paramount importance in many high-priority branches of science and technology, including accelerator-based physics, the search for new sources of energy, controlled thermonuclear fusion, plasma research, the earth’s environment, space research, particle transport physics, therapy of cancer patients by heavy ions, and more. These interdisciplinary fields are in need of knowledge about many cross sections and collisional rates for the analyzed fast ion-atom collisions, such as single ionization, excitation, charge exchange, and various combinations thereof. These include two-electron transitions, such as double ionization, excitation, or capture, as well as simultaneous electron transfer and ionization or excitation and the like—all of which are analyzed in depth in this book. Quantum Theory of High-Energy Ion-Atom Collisions focuses on multifaceted mechanisms of collisional phenomena with heavy ions and atoms at non-relativistic high energies.

Introduction to the Theory of Heavy-Ion Collisions

Introduction to the Theory of Heavy-Ion Collisions
Title Introduction to the Theory of Heavy-Ion Collisions PDF eBook
Author W. Nörenberg
Publisher Springer
Pages 286
Release 2013-11-11
Genre Science
ISBN 3540382712

Download Introduction to the Theory of Heavy-Ion Collisions Book in PDF, Epub and Kindle

With the advent of heavy-ion reactions, nuclear physics has acquired a new frontier. The new heavy-ion sources operating at electrostatic accelerators and the high-energy experiments performed at Berkeley, Dubna, Manchester and Orsay, have opened up the field, and have shown us impressive new prospects. The new accelerators now under construction at Berlin, Daresbury and Darmstadt, as well as those under consideration (GANIL, Oak Ridge, etc. ) are expected to add significantly to our knowledge and understanding of nuclear properties. This applies not only to such exotic topics as the existence and lifetimes of superheavy elements, or the possibil ity of shock waves in nuclei, but also to such more mundane issues as high-spin states, new regions of deformed nuclei and friction forces. The field promises not only to produce a rich variety of interesting phenomena, but also to have wide-spread theoretical implications. Heavy-ion reactions are characterized by the large masses of the fragments, as well as the high total energy and the large total angular momentum typically involved in the collision. A purely quantum-mechanical description of such a collision process may be too complicated to be either possible or inter esting. We expect and, in some cases,know that the classical limit, the limit of geometrical optics, a quantum-statistical or a hydrodynamical description correctly account for typical features.

An Introduction to the Atomic and Radiation Physics of Plasmas

An Introduction to the Atomic and Radiation Physics of Plasmas
Title An Introduction to the Atomic and Radiation Physics of Plasmas PDF eBook
Author G. J. Tallents
Publisher Cambridge University Press
Pages 313
Release 2018-02-22
Genre Science
ISBN 1108318010

Download An Introduction to the Atomic and Radiation Physics of Plasmas Book in PDF, Epub and Kindle

Plasmas comprise more than 99% of the observable universe. They are important in many technologies and are key potential sources for fusion power. Atomic and radiation physics is critical for the diagnosis, observation and simulation of astrophysical and laboratory plasmas, and plasma physicists working in a range of areas from astrophysics, magnetic fusion, and inertial fusion utilise atomic and radiation physics to interpret measurements. This text develops the physics of emission, absorption and interaction of light in astrophysics and in laboratory plasmas from first principles using the physics of various fields of study including quantum mechanics, electricity and magnetism, and statistical physics. Linking undergraduate level atomic and radiation physics with the advanced material required for postgraduate study and research, this text adopts a highly pedagogical approach and includes numerous exercises within each chapter for students to reinforce their understanding of the key concepts.

State-of-the-art Reviews on Energetic Ion-atom and Ion-molecule Collisions

State-of-the-art Reviews on Energetic Ion-atom and Ion-molecule Collisions
Title State-of-the-art Reviews on Energetic Ion-atom and Ion-molecule Collisions PDF eBook
Author Dževad Belkić
Publisher World Scientific Publishing Company
Pages 0
Release 2019
Genre Science
ISBN 9789811211607

Download State-of-the-art Reviews on Energetic Ion-atom and Ion-molecule Collisions Book in PDF, Epub and Kindle

"This book is based upon a part of the invited and contributing talks at the 25th International Symposium on Ion-Atom Collisions, ISIAC (biennial), held on July 23-25, 2017 in Palm Cove, Queensland, Australia. To aid the general reader, all the authors tried to present their chapters in the context of the development of the addressed particular themes and the underlying major ideas and intricacies. Some chapters contain new results that have not been previously published elsewhere. Whenever possible, the authors made their attempts to connect the basic research in atomic and molecular collision physics with some important applications in other branches of physics as well as across the physics borders. It is hoped that the material presented in this book will be interesting and useful to the beginners and specialists alike. The contents and expositions are deemed to be helpful to the beginners in assessing the potential overlap of some of the presented material with their own research themes and this might provide motivations for possible further upgrades. Likewise, specialists could take advantage of these reviews to see where the addressed themes were and where they are going, in order to acknowledge the fruits of the efforts made thus far and actively contribute to tailoring the directions of future research. Overall, this book is truly interdisciplinary. It judiciously combines experiments and theories within particle collision physics on atomic and molecular levels. It presents state-of-the-art fundamental research in this field. It addresses the possibilities for significant and versatile applications outside standard atomic and molecular collision physics ranging from astrophysics, surface as well as cluster physics/chemistry, hadron therapy in medicine and to the chemical industry. It is then, as Volume 2, fully in the spirit of the "Aims and Scope" of this book series by reference to its "Mission Statement"."-- Back cover.

Theory of Slow Atomic Collisions

Theory of Slow Atomic Collisions
Title Theory of Slow Atomic Collisions PDF eBook
Author E.E. Nikitin
Publisher Springer Science & Business Media
Pages 445
Release 2012-12-06
Genre Science
ISBN 364282045X

Download Theory of Slow Atomic Collisions Book in PDF, Epub and Kindle

The theory of atom-molecule collisions is one of the basic fields in chemi cal physics. Its most challenging part - the dynamics of chemical reactions - is as yet unresolved, but is developing very quickly. It is here a great help to have an analysis of those parts of collision theory which are already complete, a good example being the theory of atomic collisions in process es specific to chemical physics. It has long been observed that many notions of this theory can also be applied successfully to reactive and unreactive molecular collisions. More over, atomic collisions often represent a touchstone in testing approaches proposed for the solution of more complicated problems. Research on the theory of slow atomic collisions carried out at the Moscow Institute of Chemical Physics has been based on just these ideas. A general viewpoint concerning the setting up and representation of the theory came out of these studies, and appeared to be useful in studying complicated systems as well. It underlies the representation of the theory of slow atomic colli sions in this book.