Inverse Problems for Partial Differential Equations

Inverse Problems for Partial Differential Equations
Title Inverse Problems for Partial Differential Equations PDF eBook
Author Victor Isakov
Publisher Springer Science & Business Media
Pages 296
Release 2013-06-29
Genre Mathematics
ISBN 1489900306

Download Inverse Problems for Partial Differential Equations Book in PDF, Epub and Kindle

A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. By presenting the data in a readable and informative manner, the book introduces both scientific and engineering researchers as well as graduate students to the significant work done in this area in recent years, relating it to broader themes in mathematical analysis.

Introduction to Inverse Problems for Differential Equations

Introduction to Inverse Problems for Differential Equations
Title Introduction to Inverse Problems for Differential Equations PDF eBook
Author Alemdar Hasanov Hasanoğlu
Publisher Springer
Pages 264
Release 2017-07-31
Genre Mathematics
ISBN 331962797X

Download Introduction to Inverse Problems for Differential Equations Book in PDF, Epub and Kindle

This book presents a systematic exposition of the main ideas and methods in treating inverse problems for PDEs arising in basic mathematical models, though it makes no claim to being exhaustive. Mathematical models of most physical phenomena are governed by initial and boundary value problems for PDEs, and inverse problems governed by these equations arise naturally in nearly all branches of science and engineering. The book’s content, especially in the Introduction and Part I, is self-contained and is intended to also be accessible for beginning graduate students, whose mathematical background includes only basic courses in advanced calculus, PDEs and functional analysis. Further, the book can be used as the backbone for a lecture course on inverse and ill-posed problems for partial differential equations. In turn, the second part of the book consists of six nearly-independent chapters. The choice of these chapters was motivated by the fact that the inverse coefficient and source problems considered here are based on the basic and commonly used mathematical models governed by PDEs. These chapters describe not only these inverse problems, but also main inversion methods and techniques. Since the most distinctive features of any inverse problems related to PDEs are hidden in the properties of the corresponding solutions to direct problems, special attention is paid to the investigation of these properties.

Inverse Problems for Partial Differential Equations

Inverse Problems for Partial Differential Equations
Title Inverse Problems for Partial Differential Equations PDF eBook
Author Victor Isakov
Publisher Springer
Pages 414
Release 2017-02-24
Genre Mathematics
ISBN 3319516582

Download Inverse Problems for Partial Differential Equations Book in PDF, Epub and Kindle

A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. By presenting the data in a readable and informative manner, the book introduces both scientific and engineering researchers as well as graduate students to the significant work done in this area in recent years, relating it to broader themes in mathematical analysis.

Geometric Methods in Inverse Problems and PDE Control

Geometric Methods in Inverse Problems and PDE Control
Title Geometric Methods in Inverse Problems and PDE Control PDF eBook
Author Chrisopher B. Croke
Publisher Springer Science & Business Media
Pages 334
Release 2012-12-06
Genre Mathematics
ISBN 1468493752

Download Geometric Methods in Inverse Problems and PDE Control Book in PDF, Epub and Kindle

This IMA Volume in Mathematics and its Applications GEOMETRIC METHODS IN INVERSE PROBLEMS AND PDE CONTROL contains a selection of articles presented at 2001 IMA Summer Program with the same title. We would like to thank Christopher B. Croke (University of Penn sylva nia), Irena Lasiecka (University of Virginia), Gunther Uhlmann (University of Washington), and Michael S. Vogelius (Rutgers University) for their ex cellent work as organizers of the two-week summer workshop and for editing the volume. We also take this opportunity to thank the National Science Founda tion for their support of the IMA. Series Editors Douglas N. Arnold, Director of the IMA Fadil Santosa, Deputy Director of the IMA v PREFACE This volume contains a selected number of articles based on lectures delivered at the IMA 2001 Summer Program on "Geometric Methods in Inverse Problems and PDE Control. " The focus of this program was some common techniques used in the study of inverse coefficient problems and control problems for partial differential equations, with particular emphasis on their strong relation to fundamental problems of geometry. Inverse coef ficient problems for partial differential equations arise in many application areas, for instance in medical imaging, nondestructive testing, and geophys ical prospecting. Control problems involving partial differential equations may arise from the need to optimize a given performance criterion, e. g. , to dampen out undesirable vibrations of a structure , or more generally, to obtain a prescribed behaviour of the dynamics.

Computational Methods for Inverse Problems

Computational Methods for Inverse Problems
Title Computational Methods for Inverse Problems PDF eBook
Author Curtis R. Vogel
Publisher SIAM
Pages 195
Release 2002-01-01
Genre Mathematics
ISBN 0898717574

Download Computational Methods for Inverse Problems Book in PDF, Epub and Kindle

Provides a basic understanding of both the underlying mathematics and the computational methods used to solve inverse problems.

Methods for Solving Inverse Problems in Mathematical Physics

Methods for Solving Inverse Problems in Mathematical Physics
Title Methods for Solving Inverse Problems in Mathematical Physics PDF eBook
Author Global Express Ltd. Co.
Publisher CRC Press
Pages 736
Release 2000-03-21
Genre Mathematics
ISBN 9780824719876

Download Methods for Solving Inverse Problems in Mathematical Physics Book in PDF, Epub and Kindle

Developing an approach to the question of existence, uniqueness and stability of solutions, this work presents a systematic elaboration of the theory of inverse problems for all principal types of partial differential equations. It covers up-to-date methods of linear and nonlinear analysis, the theory of differential equations in Banach spaces, applications of functional analysis, and semigroup theory.

Inverse Problems with Applications in Science and Engineering

Inverse Problems with Applications in Science and Engineering
Title Inverse Problems with Applications in Science and Engineering PDF eBook
Author Daniel Lesnic
Publisher CRC Press
Pages 360
Release 2021-11-10
Genre Mathematics
ISBN 0429683251

Download Inverse Problems with Applications in Science and Engineering Book in PDF, Epub and Kindle

Driven by the advancement of industrial mathematics and the need for impact case studies, Inverse Problems with Applications in Science and Engineering thoroughly examines the state-of-the-art of some representative classes of inverse and ill-posed problems for partial differential equations (PDEs). The natural practical applications of this examination arise in heat transfer, electrostatics, porous media, acoustics, fluid and solid mechanics – all of which are addressed in this text. Features: Covers all types of PDEs — namely, elliptic (Laplace’s, Helmholtz, modified Helmholtz, biharmonic and Stokes), parabolic (heat, convection, reaction and diffusion) and hyperbolic (wave) Excellent reference for post-graduates and researchers in mathematics, engineering and any other scientific discipline that deals with inverse problems Contains both theory and numerical algorithms for solving all types of inverse and ill-posed problems