Inverse Problems for Fractional Partial Differential Equations
Title | Inverse Problems for Fractional Partial Differential Equations PDF eBook |
Author | Barbara Kaltenbacher |
Publisher | American Mathematical Society |
Pages | 522 |
Release | 2023-07-13 |
Genre | Mathematics |
ISBN | 1470472775 |
As the title of the book indicates, this is primarily a book on partial differential equations (PDEs) with two definite slants: toward inverse problems and to the inclusion of fractional derivatives. The standard paradigm, or direct problem, is to take a PDE, including all coefficients and initial/boundary conditions, and to determine the solution. The inverse problem reverses this approach asking what information about coefficients of the model can be obtained from partial information on the solution. Answering this question requires knowledge of the underlying physical model, including the exact dependence on material parameters. The last feature of the approach taken by the authors is the inclusion of fractional derivatives. This is driven by direct physical applications: a fractional derivative model often allows greater adherence to physical observations than the traditional integer order case. The book also has an extensive historical section and the material that can be called "fractional calculus" and ordinary differential equations with fractional derivatives. This part is accessible to advanced undergraduates with basic knowledge on real and complex analysis. At the other end of the spectrum, lie nonlinear fractional PDEs that require a standard graduate level course on PDEs.
Inverse Problems for Partial Differential Equations
Title | Inverse Problems for Partial Differential Equations PDF eBook |
Author | Victor Isakov |
Publisher | Springer |
Pages | 414 |
Release | 2017-02-24 |
Genre | Mathematics |
ISBN | 3319516582 |
A comprehensive description of the current theoretical and numerical aspects of inverse problems in partial differential equations. Applications include recovery of inclusions from anomalies of their gravity fields, reconstruction of the interior of the human body from exterior electrical, ultrasonic, and magnetic measurement. By presenting the data in a readable and informative manner, the book introduces both scientific and engineering researchers as well as graduate students to the significant work done in this area in recent years, relating it to broader themes in mathematical analysis.
Fractional Differential Equations
Title | Fractional Differential Equations PDF eBook |
Author | Bangti Jin |
Publisher | Springer Nature |
Pages | 377 |
Release | 2021-07-22 |
Genre | Mathematics |
ISBN | 303076043X |
This graduate textbook provides a self-contained introduction to modern mathematical theory on fractional differential equations. It addresses both ordinary and partial differential equations with a focus on detailed solution theory, especially regularity theory under realistic assumptions on the problem data. The text includes an extensive bibliography, application-driven modeling, extensive exercises, and graphic illustrations throughout to complement its comprehensive presentation of the field. It is recommended for graduate students and researchers in applied and computational mathematics, particularly applied analysis, numerical analysis and inverse problems.
Fractional Differential Equations
Title | Fractional Differential Equations PDF eBook |
Author | Anatoly Kochubei |
Publisher | Walter de Gruyter GmbH & Co KG |
Pages | 528 |
Release | 2019-02-19 |
Genre | Mathematics |
ISBN | 3110571668 |
This multi-volume handbook is the most up-to-date and comprehensive reference work in the field of fractional calculus and its numerous applications. This second volume collects authoritative chapters covering the mathematical theory of fractional calculus, including ordinary and partial differential equations of fractional order, inverse problems, and evolution equations.
Practical Inverse Problems and Their Prospects
Title | Practical Inverse Problems and Their Prospects PDF eBook |
Author | Takashi TAKIGUCHI |
Publisher | Springer Nature |
Pages | 268 |
Release | |
Genre | |
ISBN | 9819924081 |
Inverse Problems and Related Topics
Title | Inverse Problems and Related Topics PDF eBook |
Author | Jin Cheng |
Publisher | Springer Nature |
Pages | 310 |
Release | 2020-02-04 |
Genre | Mathematics |
ISBN | 9811515921 |
This volume contains 13 chapters, which are extended versions of the presentations at International Conference on Inverse Problems at Fudan University, Shanghai, China, October 12-14, 2018, in honor of Masahiro Yamamoto on the occasion of his 60th anniversary. The chapters are authored by world-renowned researchers and rising young talents, and are updated accounts of various aspects of the researches on inverse problems. The volume covers theories of inverse problems for partial differential equations, regularization methods, and related topics from control theory. This book addresses a wide audience of researchers and young post-docs and graduate students who are interested in mathematical sciences as well as mathematics.
The Analysis of Fractional Differential Equations
Title | The Analysis of Fractional Differential Equations PDF eBook |
Author | Kai Diethelm |
Publisher | Springer |
Pages | 251 |
Release | 2010-08-18 |
Genre | Mathematics |
ISBN | 3642145744 |
Fractional calculus was first developed by pure mathematicians in the middle of the 19th century. Some 100 years later, engineers and physicists have found applications for these concepts in their areas. However there has traditionally been little interaction between these two communities. In particular, typical mathematical works provide extensive findings on aspects with comparatively little significance in applications, and the engineering literature often lacks mathematical detail and precision. This book bridges the gap between the two communities. It concentrates on the class of fractional derivatives most important in applications, the Caputo operators, and provides a self-contained, thorough and mathematically rigorous study of their properties and of the corresponding differential equations. The text is a useful tool for mathematicians and researchers from the applied sciences alike. It can also be used as a basis for teaching graduate courses on fractional differential equations.