Invariants of Homology 3-Spheres

Invariants of Homology 3-Spheres
Title Invariants of Homology 3-Spheres PDF eBook
Author Nikolai Saveliev
Publisher Springer Science & Business Media
Pages 229
Release 2013-04-17
Genre Mathematics
ISBN 3662047055

Download Invariants of Homology 3-Spheres Book in PDF, Epub and Kindle

The book gives a systematic exposition of the diverse ideas and methods in the area, from algebraic topology of manifolds to invariants arising from quantum field theories. The main topics covered include: constructions and classification of homology 3-spheres, Rokhlin invariant, Casson invariant and its extensions, and Floer homology and gauge-theoretical invariants of homology cobordism. Many of the topics covered in the book appear in monograph form for the first time. The book gives a rather broad overview of ideas and methods and provides a comprehensive bibliography. The text will be a valuable source for both the graduate student and researcher in mathematics and theoretical physics.

Lectures on the Topology of 3-manifolds

Lectures on the Topology of 3-manifolds
Title Lectures on the Topology of 3-manifolds PDF eBook
Author Nikolai Saveliev
Publisher Walter de Gruyter
Pages 220
Release 1999
Genre Mathematics
ISBN 9783110162721

Download Lectures on the Topology of 3-manifolds Book in PDF, Epub and Kindle

Solitons, Geometry, and Topology: On the Crossroad

Solitons, Geometry, and Topology: On the Crossroad
Title Solitons, Geometry, and Topology: On the Crossroad PDF eBook
Author V. M. Buchstaber
Publisher American Mathematical Soc.
Pages 204
Release 1997
Genre Geometry
ISBN 9780821806661

Download Solitons, Geometry, and Topology: On the Crossroad Book in PDF, Epub and Kindle

Quantum Invariants

Quantum Invariants
Title Quantum Invariants PDF eBook
Author Tomotada Ohtsuki
Publisher World Scientific
Pages 516
Release 2002
Genre Invariants
ISBN 9789812811172

Download Quantum Invariants Book in PDF, Epub and Kindle

This book provides an extensive and self-contained presentation of quantum and related invariants of knots and 3-manifolds. Polynomial invariants of knots, such as the Jones and Alexander polynomials, are constructed as quantum invariants, i.e. invariants derived from representations of quantum groups and from the monodromy of solutions to the Knizhnik-Zamolodchikov equation. With the introduction of the Kontsevich invariant and the theory of Vassiliev invariants, the quantum invariants become well-organized. Quantum and perturbative invariants, the LMO invariant, and finite type invariants of 3-manifolds are discussed. The ChernOCoSimons field theory and the WessOCoZuminoOCoWitten model are described as the physical background of the invariants. Contents: Knots and Polynomial Invariants; Braids and Representations of the Braid Groups; Operator Invariants of Tangles via Sliced Diagrams; Ribbon Hopf Algebras and Invariants of Links; Monodromy Representations of the Braid Groups Derived from the KnizhnikOCoZamolodchikov Equation; The Kontsevich Invariant; Vassiliev Invariants; Quantum Invariants of 3-Manifolds; Perturbative Invariants of Knots and 3-Manifolds; The LMO Invariant; Finite Type Invariants of Integral Homology 3-Spheres. Readership: Researchers, lecturers and graduate students in geometry, topology and mathematical physics."

Bordered Heegaard Floer Homology

Bordered Heegaard Floer Homology
Title Bordered Heegaard Floer Homology PDF eBook
Author Robert Lipshitz
Publisher American Mathematical Soc.
Pages 294
Release 2018-08-09
Genre Mathematics
ISBN 1470428881

Download Bordered Heegaard Floer Homology Book in PDF, Epub and Kindle

The authors construct Heegaard Floer theory for 3-manifolds with connected boundary. The theory associates to an oriented, parametrized two-manifold a differential graded algebra. For a three-manifold with parametrized boundary, the invariant comes in two different versions, one of which (type D) is a module over the algebra and the other of which (type A) is an A∞ module. Both are well-defined up to chain homotopy equivalence. For a decomposition of a 3-manifold into two pieces, the A∞ tensor product of the type D module of one piece and the type A module from the other piece is ^HF of the glued manifold. As a special case of the construction, the authors specialize to the case of three-manifolds with torus boundary. This case can be used to give another proof of the surgery exact triangle for ^HF. The authors relate the bordered Floer homology of a three-manifold with torus boundary with the knot Floer homology of a filling.

Geometry of Low-Dimensional Manifolds: Volume 1, Gauge Theory and Algebraic Surfaces

Geometry of Low-Dimensional Manifolds: Volume 1, Gauge Theory and Algebraic Surfaces
Title Geometry of Low-Dimensional Manifolds: Volume 1, Gauge Theory and Algebraic Surfaces PDF eBook
Author S. K. Donaldson
Publisher Cambridge University Press
Pages 277
Release 1990
Genre Mathematics
ISBN 0521399785

Download Geometry of Low-Dimensional Manifolds: Volume 1, Gauge Theory and Algebraic Surfaces Book in PDF, Epub and Kindle

Distinguished researchers reveal the way different subjects (topology, differential and algebraic geometry and mathematical physics) interact in a text based on LMS Durham Symposium Lectures.

Low Dimensional Topology

Low Dimensional Topology
Title Low Dimensional Topology PDF eBook
Author Hanna Nencka
Publisher American Mathematical Soc.
Pages 266
Release 1999
Genre Mathematics
ISBN 0821808842

Download Low Dimensional Topology Book in PDF, Epub and Kindle

"The book has two main parts. The first is devoted to the Poincare conjecture, characterizations of PL-manifolds, covering quadratic forms of links and to categories in low dimensional topology that appear in connection with conformal and quantum field theory.