Invariant Probabilities of Transition Functions

Invariant Probabilities of Transition Functions
Title Invariant Probabilities of Transition Functions PDF eBook
Author Radu Zaharopol
Publisher Springer
Pages 405
Release 2014-06-27
Genre Mathematics
ISBN 3319057235

Download Invariant Probabilities of Transition Functions Book in PDF, Epub and Kindle

The structure of the set of all the invariant probabilities and the structure of various types of individual invariant probabilities of a transition function are two topics of significant interest in the theory of transition functions, and are studied in this book. The results obtained are useful in ergodic theory and the theory of dynamical systems, which, in turn, can be applied in various other areas (like number theory). They are illustrated using transition functions defined by flows, semiflows, and one-parameter convolution semigroups of probability measures. In this book, all results on transition probabilities that have been published by the author between 2004 and 2008 are extended to transition functions. The proofs of the results obtained are new. For transition functions that satisfy very general conditions the book describes an ergodic decomposition that provides relevant information on the structure of the corresponding set of invariant probabilities. Ergodic decomposition means a splitting of the state space, where the invariant ergodic probability measures play a significant role. Other topics covered include: characterizations of the supports of various types of invariant probability measures and the use of these to obtain criteria for unique ergodicity, and the proofs of two mean ergodic theorems for a certain type of transition functions. The book will be of interest to mathematicians working in ergodic theory, dynamical systems, or the theory of Markov processes. Biologists, physicists and economists interested in interacting particle systems and rigorous mathematics will also find this book a valuable resource. Parts of it are suitable for advanced graduate courses. Prerequisites are basic notions and results on functional analysis, general topology, measure theory, the Bochner integral and some of its applications.

Markov Chains and Invariant Probabilities

Markov Chains and Invariant Probabilities
Title Markov Chains and Invariant Probabilities PDF eBook
Author Onésimo Hernández-Lerma
Publisher Birkhäuser
Pages 213
Release 2012-12-06
Genre Mathematics
ISBN 3034880243

Download Markov Chains and Invariant Probabilities Book in PDF, Epub and Kindle

This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).

Introduction to Stochastic Processes

Introduction to Stochastic Processes
Title Introduction to Stochastic Processes PDF eBook
Author Gregory F. Lawler
Publisher CRC Press
Pages 249
Release 2018-10-03
Genre Mathematics
ISBN 1482286114

Download Introduction to Stochastic Processes Book in PDF, Epub and Kindle

Emphasizing fundamental mathematical ideas rather than proofs, Introduction to Stochastic Processes, Second Edition provides quick access to important foundations of probability theory applicable to problems in many fields. Assuming that you have a reasonable level of computer literacy, the ability to write simple programs, and the access to software for linear algebra computations, the author approaches the problems and theorems with a focus on stochastic processes evolving with time, rather than a particular emphasis on measure theory. For those lacking in exposure to linear differential and difference equations, the author begins with a brief introduction to these concepts. He proceeds to discuss Markov chains, optimal stopping, martingales, and Brownian motion. The book concludes with a chapter on stochastic integration. The author supplies many basic, general examples and provides exercises at the end of each chapter. New to the Second Edition: Expanded chapter on stochastic integration that introduces modern mathematical finance Introduction of Girsanov transformation and the Feynman-Kac formula Expanded discussion of Itô's formula and the Black-Scholes formula for pricing options New topics such as Doob's maximal inequality and a discussion on self similarity in the chapter on Brownian motion Applicable to the fields of mathematics, statistics, and engineering as well as computer science, economics, business, biological science, psychology, and engineering, this concise introduction is an excellent resource both for students and professionals.

Markov Processes, Structure and Asymptotic Behavior

Markov Processes, Structure and Asymptotic Behavior
Title Markov Processes, Structure and Asymptotic Behavior PDF eBook
Author Murray Rosenblatt
Publisher Springer Science & Business Media
Pages 282
Release 2012-12-06
Genre Mathematics
ISBN 3642652387

Download Markov Processes, Structure and Asymptotic Behavior Book in PDF, Epub and Kindle

This book is concerned with a set of related problems in probability theory that are considered in the context of Markov processes. Some of these are natural to consider, especially for Markov processes. Other problems have a broader range of validity but are convenient to pose for Markov processes. The book can be used as the basis for an interesting course on Markov processes or stationary processes. For the most part these questions are considered for discrete parameter processes, although they are also of obvious interest for continuous time parameter processes. This allows one to avoid the delicate measure theoretic questions that might arise in the continuous parameter case. There is an attempt to motivate the material in terms of applications. Many of the topics concern general questions of structure and representation of processes that have not previously been presented in book form. A set of notes comment on the many problems that are still left open and related material in the literature. It is also hoped that the book will be useful as a reference to the reader who would like an introduction to these topics as well as to the reader interested in extending and completing results of this type.

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume II, Part II

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume II, Part II
Title Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume II, Part II PDF eBook
Author Lucien M. Le Cam
Publisher Univ of California Press
Pages 500
Release 2024-03-29
Genre Mathematics
ISBN 0520325338

Download Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume II, Part II Book in PDF, Epub and Kindle

This title is part of UC Press's Voices Revived program, which commemorates University of California Press’s mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1967.

Proceedings of the Fifth Berkeley Symmposium on Mathematical Statistics and Probability

Proceedings of the Fifth Berkeley Symmposium on Mathematical Statistics and Probability
Title Proceedings of the Fifth Berkeley Symmposium on Mathematical Statistics and Probability PDF eBook
Author
Publisher Univ of California Press
Pages 504
Release
Genre
ISBN

Download Proceedings of the Fifth Berkeley Symmposium on Mathematical Statistics and Probability Book in PDF, Epub and Kindle

Stochastic Partial Differential Equations and Related Fields

Stochastic Partial Differential Equations and Related Fields
Title Stochastic Partial Differential Equations and Related Fields PDF eBook
Author Andreas Eberle
Publisher Springer
Pages 565
Release 2018-07-03
Genre Mathematics
ISBN 3319749293

Download Stochastic Partial Differential Equations and Related Fields Book in PDF, Epub and Kindle

This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10–14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Röckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equations and Stochastic Analysis in general. In particular, the longer surveys focus on Dirichlet forms and Potential theory, the analysis of Kolmogorov operators, Fokker–Planck equations in Hilbert spaces, the theory of variational solutions to stochastic partial differential equations, singular stochastic partial differential equations and their applications in mathematical physics, as well as on the theory of regularity structures and paracontrolled distributions. The numerous research surveys make the volume especially useful for graduate students and researchers who wish to start work in the above-mentioned areas, or who want to be informed about the current state of the art.