Invariant Probabilities of Markov-Feller Operators and Their Supports

Invariant Probabilities of Markov-Feller Operators and Their Supports
Title Invariant Probabilities of Markov-Feller Operators and Their Supports PDF eBook
Author Radu Zaharopol
Publisher Springer Science & Business Media
Pages 1008
Release 2005-01-28
Genre Mathematics
ISBN 9783764371340

Download Invariant Probabilities of Markov-Feller Operators and Their Supports Book in PDF, Epub and Kindle

This book covers invariant probabilities for a large class of discrete-time homogeneous Markov processes known as Feller processes. These Feller processes appear in the study of iterated function systems with probabilities, convolution operators, and certain time series. From the reviews: "A very useful reference for researchers wishing to enter the area of stationary Markov processes both from a probabilistic and a dynamical point of view." --MONATSHEFTE FÜR MATHEMATIK

Invariant Probabilities of Markov-Feller Operators and Their Supports

Invariant Probabilities of Markov-Feller Operators and Their Supports
Title Invariant Probabilities of Markov-Feller Operators and Their Supports PDF eBook
Author Radu Zaharopol
Publisher Springer Science & Business Media
Pages 118
Release 2005-02-02
Genre Mathematics
ISBN 376437344X

Download Invariant Probabilities of Markov-Feller Operators and Their Supports Book in PDF, Epub and Kindle

This book covers invariant probabilities for a large class of discrete-time homogeneous Markov processes known as Feller processes. These Feller processes appear in the study of iterated function systems with probabilities, convolution operators, and certain time series. From the reviews: "A very useful reference for researchers wishing to enter the area of stationary Markov processes both from a probabilistic and a dynamical point of view." --MONATSHEFTE FÜR MATHEMATIK

Invariant Probabilities of Transition Functions

Invariant Probabilities of Transition Functions
Title Invariant Probabilities of Transition Functions PDF eBook
Author Radu Zaharopol
Publisher Springer
Pages 405
Release 2014-06-27
Genre Mathematics
ISBN 3319057235

Download Invariant Probabilities of Transition Functions Book in PDF, Epub and Kindle

The structure of the set of all the invariant probabilities and the structure of various types of individual invariant probabilities of a transition function are two topics of significant interest in the theory of transition functions, and are studied in this book. The results obtained are useful in ergodic theory and the theory of dynamical systems, which, in turn, can be applied in various other areas (like number theory). They are illustrated using transition functions defined by flows, semiflows, and one-parameter convolution semigroups of probability measures. In this book, all results on transition probabilities that have been published by the author between 2004 and 2008 are extended to transition functions. The proofs of the results obtained are new. For transition functions that satisfy very general conditions the book describes an ergodic decomposition that provides relevant information on the structure of the corresponding set of invariant probabilities. Ergodic decomposition means a splitting of the state space, where the invariant ergodic probability measures play a significant role. Other topics covered include: characterizations of the supports of various types of invariant probability measures and the use of these to obtain criteria for unique ergodicity, and the proofs of two mean ergodic theorems for a certain type of transition functions. The book will be of interest to mathematicians working in ergodic theory, dynamical systems, or the theory of Markov processes. Biologists, physicists and economists interested in interacting particle systems and rigorous mathematics will also find this book a valuable resource. Parts of it are suitable for advanced graduate courses. Prerequisites are basic notions and results on functional analysis, general topology, measure theory, the Bochner integral and some of its applications.

Markov Processes, Feller Semigroups And Evolution Equations

Markov Processes, Feller Semigroups And Evolution Equations
Title Markov Processes, Feller Semigroups And Evolution Equations PDF eBook
Author Jan A Van Casteren
Publisher World Scientific
Pages 825
Release 2010-11-25
Genre Mathematics
ISBN 9814464171

Download Markov Processes, Feller Semigroups And Evolution Equations Book in PDF, Epub and Kindle

The book provides a systemic treatment of time-dependent strong Markov processes with values in a Polish space. It describes its generators and the link with stochastic differential equations in infinite dimensions. In a unifying way, where the square gradient operator is employed, new results for backward stochastic differential equations and long-time behavior are discussed in depth. The book also establishes a link between propagators or evolution families with the Feller property and time-inhomogeneous Markov processes. This mathematical material finds its applications in several branches of the scientific world, among which are mathematical physics, hedging models in financial mathematics, and population models.

Fokker–Planck–Kolmogorov Equations

Fokker–Planck–Kolmogorov Equations
Title Fokker–Planck–Kolmogorov Equations PDF eBook
Author Vladimir I. Bogachev
Publisher American Mathematical Society
Pages 495
Release 2022-02-10
Genre Mathematics
ISBN 1470470098

Download Fokker–Planck–Kolmogorov Equations Book in PDF, Epub and Kindle

This book gives an exposition of the principal concepts and results related to second order elliptic and parabolic equations for measures, the main examples of which are Fokker–Planck–Kolmogorov equations for stationary and transition probabilities of diffusion processes. Existence and uniqueness of solutions are studied along with existence and Sobolev regularity of their densities and upper and lower bounds for the latter. The target readership includes mathematicians and physicists whose research is related to diffusion processes as well as elliptic and parabolic equations.

Markov Chains and Invariant Probabilities

Markov Chains and Invariant Probabilities
Title Markov Chains and Invariant Probabilities PDF eBook
Author Onésimo Hernández-Lerma
Publisher Birkhäuser
Pages 213
Release 2012-12-06
Genre Mathematics
ISBN 3034880243

Download Markov Chains and Invariant Probabilities Book in PDF, Epub and Kindle

This book is about discrete-time, time-homogeneous, Markov chains (Mes) and their ergodic behavior. To this end, most of the material is in fact about stable Mes, by which we mean Mes that admit an invariant probability measure. To state this more precisely and give an overview of the questions we shall be dealing with, we will first introduce some notation and terminology. Let (X,B) be a measurable space, and consider a X-valued Markov chain ~. = {~k' k = 0, 1, ... } with transition probability function (t.pJ.) P(x, B), i.e., P(x, B) := Prob (~k+1 E B I ~k = x) for each x E X, B E B, and k = 0,1, .... The Me ~. is said to be stable if there exists a probability measure (p.m.) /.l on B such that (*) VB EB. /.l(B) = Ix /.l(dx) P(x, B) If (*) holds then /.l is called an invariant p.m. for the Me ~. (or the t.p.f. P).

Flag-transitive Steiner Designs

Flag-transitive Steiner Designs
Title Flag-transitive Steiner Designs PDF eBook
Author Michael Huber
Publisher Springer Science & Business Media
Pages 128
Release 2009-03-21
Genre Mathematics
ISBN 303460002X

Download Flag-transitive Steiner Designs Book in PDF, Epub and Kindle

The characterization of combinatorial or geometric structures in terms of their groups of automorphisms has attracted considerable interest in the last decades and is now commonly viewed as a natural generalization of Felix Klein’s Erlangen program(1872).Inaddition,especiallyfor?nitestructures,importantapplications to practical topics such as design theory, coding theory and cryptography have made the ?eld even more attractive. The subject matter of this research monograph is the study and class- cation of ?ag-transitive Steiner designs, that is, combinatorial t-(v,k,1) designs which admit a group of automorphisms acting transitively on incident point-block pairs. As a consequence of the classi?cation of the ?nite simple groups, it has been possible in recent years to characterize Steiner t-designs, mainly for t=2,adm- ting groups of automorphisms with su?ciently strong symmetry properties. For Steiner 2-designs, arguably the most general results have been the classi?cation of all point 2-transitive Steiner 2-designs in 1985 by W. M. Kantor, and the almost complete determination of all ?ag-transitive Steiner 2-designs announced in 1990 byF.Buekenhout,A.Delandtsheer,J.Doyen,P.B.Kleidman,M.W.Liebeck, and J. Saxl. However, despite the classi?cation of the ?nite simple groups, for Steiner t-designs witht> 2 most of the characterizations of these types have remained long-standing challenging problems. Speci?cally, the determination of all ?- transitive Steiner t-designs with 3? t? 6 has been of particular interest and object of research for more than 40 years.