Introductory Transport Theory for Charged Particles in Gases
Title | Introductory Transport Theory for Charged Particles in Gases PDF eBook |
Author | Robert Edward Robson |
Publisher | |
Pages | |
Release | 2006 |
Genre | |
ISBN | 9789812772848 |
Introductory Transport Theory For Charged Particles In Gases
Title | Introductory Transport Theory For Charged Particles In Gases PDF eBook |
Author | Robert E Robson |
Publisher | World Scientific Publishing Company |
Pages | 195 |
Release | 2006-07-31 |
Genre | Science |
ISBN | 9813106794 |
Many areas of physics research depend upon a good physical understanding of charged particle transport processes in gases, a statement which is as true now as it was in the early part of the last century, when modern physics was taking shape. Gas lasers, multi-wire drift chambers used in high energy particle detectors, muon-catalysed fusion in hydrogen and its isotopes and low-temperature plasma processing technology are just a few examples of experiments and processes in which electrons, ions or muons play a key role. The macroscopic properties of these non-equilibrium systems can best be found by averaging microscopic collision properties over a velocity distribution function, calculated from solution of Boltzmann's kinetic equation, using recently developed techniques. This is the realm of the modern kinetic theory of gases, and is the theme of this book.
Introductory Transport Theory for Charged Particles in Gases
Title | Introductory Transport Theory for Charged Particles in Gases PDF eBook |
Author | Robert Edward Robson |
Publisher | World Scientific |
Pages | 196 |
Release | 2006 |
Genre | Science |
ISBN | 9812700110 |
Many areas of physics research depend upon a good physical understanding of charged particle transport processes in gases, a statement which is as true now as it was in the early part of the last century, when modern physics was taking shape. Gas lasers, multi-wire drift chambers used in high energy particle detectors, muon-catalysed fusion in hydrogen and its isotopes and low-temperature plasma processing technology are just a few examples of experiments and processes in which electrons, ions or muons play a key role. The macroscopic properties of these non-equilibrium systems can best be found by averaging microscopic collision properties over a velocity distribution function, calculated from solution of Boltzmann's kinetic equation, using recently developed techniques. This is the realm of the modern kinetic theory of gases, and is the theme of this book.
Gaseous Ion Mobility, Diffusion, and Reaction
Title | Gaseous Ion Mobility, Diffusion, and Reaction PDF eBook |
Author | Larry A. Viehland |
Publisher | Springer |
Pages | 329 |
Release | 2018-12-19 |
Genre | Science |
ISBN | 3030044947 |
This book is about the drift, diffusion, and reaction of ions moving through gases under the influence of an external electric field, the gas temperature, and the number density. While this field was established late in the 19th century, experimental and theoretical studies of ion and electron swarms continue to be important in such varied fields as atomic and molecular physics, aeronomy and atmospheric chemistry, gaseous electronics, plasma processing, and laser physics. This book follows in the rigorous tradition of well-known older books on the subject, while at the same time providing a much-needed overview of modern developments with a focus on theory. Graduate students and researchers new to this field will find this book an indispensable guide, particularly those involved with ion mobility spectrometry and the use of ion transport coefficients to test and improve ab initio ion-neutral interaction potentials. Established researchers and academics will find in this book a modern companion to the classic references.
Gaseous Radiation Detectors
Title | Gaseous Radiation Detectors PDF eBook |
Author | Fabio Sauli |
Publisher | Cambridge University Press |
Pages | 513 |
Release | 2014-06-12 |
Genre | Science |
ISBN | 1107043018 |
Describes the fundamentals and applications of gaseous radiation detection, ideal for researchers and experimentalists in nuclear and particle physics.
Granular Gases
Title | Granular Gases PDF eBook |
Author | Thorsten Pöschel |
Publisher | Springer Science & Business Media |
Pages | 454 |
Release | 2001-02-27 |
Genre | Science |
ISBN | 3540414584 |
"Granular Gases" are diluted many-particle systems in which the mean free path of the particles is much larger than the typical particle size, and where particle collisions occur dissipatively. The dissipation of kinetic energy can lead to effects such as the formation of clusters, anomalous diffusion and characteristic shock waves to name but a few. The book is organized as follows: Part I comprises the rigorous theoretical results for the dilute limit. The detailed properties of binary collisions are described in Part II. Part III contains experimental investigations of granular gases. Large-scale behaviour as found in astrophysical systems is discussed in Part IV. Part V, finally, deals with possible generalizations for dense granular systems.
University Physics
Title | University Physics PDF eBook |
Author | Samuel J. Ling |
Publisher | |
Pages | 818 |
Release | 2017-12-19 |
Genre | Science |
ISBN | 9789888407613 |
University Physics is designed for the two- or three-semester calculus-based physics course. The text has been developed to meet the scope and sequence of most university physics courses and provides a foundation for a career in mathematics, science, or engineering. The book provides an important opportunity for students to learn the core concepts of physics and understand how those concepts apply to their lives and to the world around them. Due to the comprehensive nature of the material, we are offering the book in three volumes for flexibility and efficiency. Coverage and Scope Our University Physics textbook adheres to the scope and sequence of most two- and three-semester physics courses nationwide. We have worked to make physics interesting and accessible to students while maintaining the mathematical rigor inherent in the subject. With this objective in mind, the content of this textbook has been developed and arranged to provide a logical progression from fundamental to more advanced concepts, building upon what students have already learned and emphasizing connections between topics and between theory and applications. The goal of each section is to enable students not just to recognize concepts, but to work with them in ways that will be useful in later courses and future careers. The organization and pedagogical features were developed and vetted with feedback from science educators dedicated to the project. VOLUME II Unit 1: Thermodynamics Chapter 1: Temperature and Heat Chapter 2: The Kinetic Theory of Gases Chapter 3: The First Law of Thermodynamics Chapter 4: The Second Law of Thermodynamics Unit 2: Electricity and Magnetism Chapter 5: Electric Charges and Fields Chapter 6: Gauss's Law Chapter 7: Electric Potential Chapter 8: Capacitance Chapter 9: Current and Resistance Chapter 10: Direct-Current Circuits Chapter 11: Magnetic Forces and Fields Chapter 12: Sources of Magnetic Fields Chapter 13: Electromagnetic Induction Chapter 14: Inductance Chapter 15: Alternating-Current Circuits Chapter 16: Electromagnetic Waves