Elementary Theory of Analytic Functions of One or Several Complex Variables
Title | Elementary Theory of Analytic Functions of One or Several Complex Variables PDF eBook |
Author | Henri Cartan |
Publisher | Courier Corporation |
Pages | 242 |
Release | 2013-04-22 |
Genre | Mathematics |
ISBN | 0486318672 |
Basic treatment includes existence theorem for solutions of differential systems where data is analytic, holomorphic functions, Cauchy's integral, Taylor and Laurent expansions, more. Exercises. 1973 edition.
Introduction to the Theory of Analytic Functions
Title | Introduction to the Theory of Analytic Functions PDF eBook |
Author | James Harkness |
Publisher | |
Pages | 358 |
Release | 1898 |
Genre | Analytic functions |
ISBN |
Complex Analysis: an Introduction to Theory of Analytic Functions of One Complex Variable
Title | Complex Analysis: an Introduction to Theory of Analytic Functions of One Complex Variable PDF eBook |
Author | Ahlfors Lars V |
Publisher | |
Pages | 331 |
Release | 1981 |
Genre | |
ISBN |
Analytic Functions of Several Complex Variables
Title | Analytic Functions of Several Complex Variables PDF eBook |
Author | Robert Clifford Gunning |
Publisher | American Mathematical Soc. |
Pages | 338 |
Release | 2009 |
Genre | Mathematics |
ISBN | 0821821652 |
The theory of analytic functions of several complex variables enjoyed a period of remarkable development in the middle part of the twentieth century. This title intends to provide an extensive introduction to the Oka-Cartan theory and some of its applications, and to the general theory of analytic spaces.
An Introduction to Analytic Functions
Title | An Introduction to Analytic Functions PDF eBook |
Author | John Sheridan Mac Nerney |
Publisher | Springer Nature |
Pages | 96 |
Release | 2020-05-30 |
Genre | Mathematics |
ISBN | 303042085X |
When first published in 1959, this book was the basis of a two-semester course in complex analysis for upper undergraduate and graduate students. J. S. Mac Nerney was a proponent of the Socratic, or “do-it-yourself” method of learning mathematics, in which students are encouraged to engage in mathematical problem solving, including theorems at every level which are often regarded as “too difficult” for students to prove for themselves. Accordingly, Mac Nerney provides no proofs. What he does instead is to compose and arrange the investigation in his own unique style, so that a contextual proof is always available to the persistent student who enjoys a challenge. The central idea is to empower students by allowing them to discover and rely on their own mathematical abilities. This text may be used in a variety of settings, including: the usual classroom or seminar, but with the teacher acting mainly as a moderator while the students present their discoveries, a small-group setting in which the students present their discoveries to each other, and independent study. The Editors, William E. Kaufman (who was Mac Nerney’s last PhD student) and Ryan C. Schwiebert, have composed the original typed Work into LaTeX ; they have updated the notation, terminology, and some of the prose for modern usage, but the organization of content has been strictly preserved. About this Book, some new exercises, and an index have also been added.
Introduction to the Theory of Analytic Spaces
Title | Introduction to the Theory of Analytic Spaces PDF eBook |
Author | Raghavan Narasimhan |
Publisher | Springer |
Pages | 149 |
Release | 2006-11-14 |
Genre | Mathematics |
ISBN | 354034845X |
An Introduction to Complex Function Theory
Title | An Introduction to Complex Function Theory PDF eBook |
Author | Bruce P. Palka |
Publisher | Springer Science & Business Media |
Pages | 585 |
Release | 1991 |
Genre | Mathematics |
ISBN | 038797427X |
This book provides a rigorous yet elementary introduction to the theory of analytic functions of a single complex variable. While presupposing in its readership a degree of mathematical maturity, it insists on no formal prerequisites beyond a sound knowledge of calculus. Starting from basic definitions, the text slowly and carefully develops the ideas of complex analysis to the point where such landmarks of the subject as Cauchy's theorem, the Riemann mapping theorem, and the theorem of Mittag-Leffler can be treated without sidestepping any issues of rigor. The emphasis throughout is a geometric one, most pronounced in the extensive chapter dealing with conformal mapping, which amounts essentially to a "short course" in that important area of complex function theory. Each chapter concludes with a wide selection of exercises, ranging from straightforward computations to problems of a more conceptual and thought-provoking nature.