Introduction to Symmetry Analysis
Title | Introduction to Symmetry Analysis PDF eBook |
Author | Brian J. Cantwell |
Publisher | Cambridge University Press |
Pages | 670 |
Release | 2002-09-23 |
Genre | Mathematics |
ISBN | 9781139431712 |
Symmetry analysis based on Lie group theory is the most important method for solving nonlinear problems aside from numerical computation. The method can be used to find the symmetries of almost any system of differential equations and the knowledge of these symmetries can be used to reduce the complexity of physical problems governed by the equations. This is a broad, self-contained, introduction to the basics of symmetry analysis for first and second year graduate students in science, engineering and applied mathematics. Mathematica-based software for finding the Lie point symmetries and Lie-Bäcklund symmetries of differential equations is included on a CD along with more than forty sample notebooks illustrating applications ranging from simple, low order, ordinary differential equations to complex systems of partial differential equations. MathReader 4.0 is included to let the user read the sample notebooks and follow the procedure used to find symmetries.
Symmetry Analysis of Differential Equations
Title | Symmetry Analysis of Differential Equations PDF eBook |
Author | Daniel J. Arrigo |
Publisher | John Wiley & Sons |
Pages | 190 |
Release | 2015-01-20 |
Genre | Mathematics |
ISBN | 1118721403 |
A self-contained introduction to the methods and techniques of symmetry analysis used to solve ODEs and PDEs Symmetry Analysis of Differential Equations: An Introduction presents an accessible approach to the uses of symmetry methods in solving both ordinary differential equations (ODEs) and partial differential equations (PDEs). Providing comprehensive coverage, the book fills a gap in the literature by discussing elementary symmetry concepts and invariance, including methods for reducing the complexity of ODEs and PDEs in an effort to solve the associated problems. Thoroughly class-tested, the author presents classical methods in a systematic, logical, and well-balanced manner. As the book progresses, the chapters graduate from elementary symmetries and the invariance of algebraic equations, to ODEs and PDEs, followed by coverage of the nonclassical method and compatibility. Symmetry Analysis of Differential Equations: An Introduction also features: Detailed, step-by-step examples to guide readers through the methods of symmetry analysis End-of-chapter exercises, varying from elementary to advanced, with select solutions to aid in the calculation of the presented algorithmic methods Symmetry Analysis of Differential Equations: An Introduction is an ideal textbook for upper-undergraduate and graduate-level courses in symmetry methods and applied mathematics. The book is also a useful reference for professionals in science, physics, and engineering, as well as anyone wishing to learn about the use of symmetry methods in solving differential equations.
Symmetry Analysis of Differential Equations with Mathematica®
Title | Symmetry Analysis of Differential Equations with Mathematica® PDF eBook |
Author | Gerd Baumann |
Publisher | Springer Science & Business Media |
Pages | 532 |
Release | 2013-11-21 |
Genre | Mathematics |
ISBN | 1461221102 |
The first book to explicitly use Mathematica so as to allow researchers and students to more easily compute and solve almost any kind of differential equation using Lie's theory. Previously time-consuming and cumbersome calculations are now much more easily and quickly performed using the Mathematica computer algebra software. The material in this book, and on the accompanying CD-ROM, will be of interest to a broad group of scientists, mathematicians and engineers involved in dealing with symmetry analysis of differential equations. Each section of the book starts with a theoretical discussion of the material, then shows the application in connection with Mathematica. The cross-platform CD-ROM contains Mathematica (version 3.0) notebooks which allow users to directly interact with the code presented within the book. In addition, the author's proprietary "MathLie" software is included, so users can readily learn to use this powerful tool in regard to performing algebraic computations.
Introduction to Mechanics and Symmetry
Title | Introduction to Mechanics and Symmetry PDF eBook |
Author | Jerrold E. Marsden |
Publisher | Springer Science & Business Media |
Pages | 593 |
Release | 2013-03-19 |
Genre | Science |
ISBN | 0387217924 |
A development of the basic theory and applications of mechanics with an emphasis on the role of symmetry. The book includes numerous specific applications, making it beneficial to physicists and engineers. Specific examples and applications show how the theory works, backed by up-to-date techniques, all of which make the text accessible to a wide variety of readers, especially senior undergraduates and graduates in mathematics, physics and engineering. This second edition has been rewritten and updated for clarity throughout, with a major revamping and expansion of the exercises. Internet supplements containing additional material are also available.
Symmetry Methods for Differential Equations
Title | Symmetry Methods for Differential Equations PDF eBook |
Author | Peter Ellsworth Hydon |
Publisher | Cambridge University Press |
Pages | 230 |
Release | 2000-01-28 |
Genre | Mathematics |
ISBN | 9780521497862 |
This book is a straightforward introduction to the subject of symmetry methods for solving differential equations, and is aimed at applied mathematicians, physicists, and engineers. The presentation is informal, using many worked examples to illustrate the main symmetry methods. It is written at a level suitable for postgraduates and advanced undergraduates, and is designed to enable the reader to master the main techniques quickly and easily.The book contains some methods that have not previously appeared in a text. These include methods for obtaining discrete symmetries and integrating factors.
Symmetry: A Very Short Introduction
Title | Symmetry: A Very Short Introduction PDF eBook |
Author | Ian Stewart |
Publisher | OUP Oxford |
Pages | 161 |
Release | 2013-05-30 |
Genre | Mathematics |
ISBN | 0191652741 |
In the 1800s mathematicians introduced a formal theory of symmetry: group theory. Now a branch of abstract algebra, this subject first arose in the theory of equations. Symmetry is an immensely important concept in mathematics and throughout the sciences, and its applications range across the entire subject. Symmetry governs the structure of crystals, innumerable types of pattern formation, how systems change their state as parameters vary; and fundamental physics is governed by symmetries in the laws of nature. It is highly visual, with applications that include animal markings, locomotion, evolutionary biology, elastic buckling, waves, the shape of the Earth, and the form of galaxies. In this Very Short Introduction, Ian Stewart demonstrates its deep implications, and shows how it plays a major role in the current search to unify relativity and quantum theory. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics
Title | Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics PDF eBook |
Author | W.I. Fushchich |
Publisher | Springer Science & Business Media |
Pages | 456 |
Release | 2013-03-14 |
Genre | Science |
ISBN | 9401731985 |
by spin or (spin s = 1/2) field equations is emphasized because their solutions can be used for constructing solutions of other field equations insofar as fields with any spin may be constructed from spin s = 1/2 fields. A brief account of the main ideas of the book is presented in the Introduction. The book is largely based on the authors' works [55-109, 176-189, 13-16, 7*-14*,23*, 24*] carried out in the Institute of Mathematics, Academy of Sciences of the Ukraine. References to other sources is not intended to imply completeness. As a rule, only those works used directly are cited. The authors wish to express their gratitude to Academician Yu.A. Mitropoi sky, and to Academician of Academy of Sciences of the Ukraine O.S. Parasyuk, for basic support and stimulation over the course of many years; to our cowork ers in the Department of Applied Studies, LA. Egorchenko, R.Z. Zhdanov, A.G. Nikitin, LV. Revenko, V.L Lagno, and I.M. Tsifra for assistance with the manuscript.