Introduction to Statistical Methods in Modern Genetics
Title | Introduction to Statistical Methods in Modern Genetics PDF eBook |
Author | M.C. Yang |
Publisher | CRC Press |
Pages | 258 |
Release | 2000-02-23 |
Genre | Mathematics |
ISBN | 1482287390 |
Though the basic statistical theory behind modern genetics is not that difficult, most statistical genetics papers are not easy to read for beginners, and fitting formulae to a particular area of application quickly becomes very tedious. Introduction to Statistical Methods in Modern Genetics makes a clear distinction between the necessary and unnecessary complexities. The author keeps the derivations of methods simple without losing the mathematical details. He also provides the necessary background in modern genetics for newcomers to the field, including discussion ranging from biological and molecular experiments to gene hunting and genetic engineering.
An Introduction to Statistical Genetic Data Analysis
Title | An Introduction to Statistical Genetic Data Analysis PDF eBook |
Author | Melinda C. Mills |
Publisher | MIT Press |
Pages | 433 |
Release | 2020-02-18 |
Genre | Science |
ISBN | 0262357445 |
A comprehensive introduction to modern applied statistical genetic data analysis, accessible to those without a background in molecular biology or genetics. Human genetic research is now relevant beyond biology, epidemiology, and the medical sciences, with applications in such fields as psychology, psychiatry, statistics, demography, sociology, and economics. With advances in computing power, the availability of data, and new techniques, it is now possible to integrate large-scale molecular genetic information into research across a broad range of topics. This book offers the first comprehensive introduction to modern applied statistical genetic data analysis that covers theory, data preparation, and analysis of molecular genetic data, with hands-on computer exercises. It is accessible to students and researchers in any empirically oriented medical, biological, or social science discipline; a background in molecular biology or genetics is not required. The book first provides foundations for statistical genetic data analysis, including a survey of fundamental concepts, primers on statistics and human evolution, and an introduction to polygenic scores. It then covers the practicalities of working with genetic data, discussing such topics as analytical challenges and data management. Finally, the book presents applications and advanced topics, including polygenic score and gene-environment interaction applications, Mendelian Randomization and instrumental variables, and ethical issues. The software and data used in the book are freely available and can be found on the book's website.
The Fundamentals of Modern Statistical Genetics
Title | The Fundamentals of Modern Statistical Genetics PDF eBook |
Author | Nan M. Laird |
Publisher | Springer Science & Business Media |
Pages | 226 |
Release | 2010-12-13 |
Genre | Medical |
ISBN | 1441973389 |
This book covers the statistical models and methods that are used to understand human genetics, following the historical and recent developments of human genetics. Starting with Mendel’s first experiments to genome-wide association studies, the book describes how genetic information can be incorporated into statistical models to discover disease genes. All commonly used approaches in statistical genetics (e.g. aggregation analysis, segregation, linkage analysis, etc), are used, but the focus of the book is modern approaches to association analysis. Numerous examples illustrate key points throughout the text, both of Mendelian and complex genetic disorders. The intended audience is statisticians, biostatisticians, epidemiologists and quantitatively- oriented geneticists and health scientists wanting to learn about statistical methods for genetic analysis, whether to better analyze genetic data, or to pursue research in methodology. A background in intermediate level statistical methods is required. The authors include few mathematical derivations, and the exercises provide problems for students with a broad range of skill levels. No background in genetics is assumed.
Handbook of Statistical Genetics
Title | Handbook of Statistical Genetics PDF eBook |
Author | David J. Balding |
Publisher | John Wiley & Sons |
Pages | 1616 |
Release | 2008-06-10 |
Genre | Science |
ISBN | 9780470997628 |
The Handbook for Statistical Genetics is widely regarded as the reference work in the field. However, the field has developed considerably over the past three years. In particular the modeling of genetic networks has advanced considerably via the evolution of microarray analysis. As a consequence the 3rd edition of the handbook contains a much expanded section on Network Modeling, including 5 new chapters covering metabolic networks, graphical modeling and inference and simulation of pedigrees and genealogies. Other chapters new to the 3rd edition include Human Population Genetics, Genome-wide Association Studies, Family-based Association Studies, Pharmacogenetics, Epigenetics, Ethic and Insurance. As with the second Edition, the Handbook includes a glossary of terms, acronyms and abbreviations, and features extensive cross-referencing between the chapters, tying the different areas together. With heavy use of up-to-date examples, real-life case studies and references to web-based resources, this continues to be must-have reference in a vital area of research. Edited by the leading international authorities in the field. David Balding - Department of Epidemiology & Public Health, Imperial College An advisor for our Probability & Statistics series, Professor Balding is also a previous Wiley author, having written Weight-of-Evidence for Forensic DNA Profiles, as well as having edited the two previous editions of HSG. With over 20 years teaching experience, he’s also had dozens of articles published in numerous international journals. Martin Bishop – Head of the Bioinformatics Division at the HGMP Resource Centre As well as the first two editions of HSG, Dr Bishop has edited a number of introductory books on the application of informatics to molecular biology and genetics. He is the Associate Editor of the journal Bioinformatics and Managing Editor of Briefings in Bioinformatics. Chris Cannings – Division of Genomic Medicine, University of Sheffield With over 40 years teaching in the area, Professor Cannings has published over 100 papers and is on the editorial board of many related journals. Co-editor of the two previous editions of HSG, he also authored a book on this topic.
Mathematical and Statistical Methods for Genetic Analysis
Title | Mathematical and Statistical Methods for Genetic Analysis PDF eBook |
Author | Kenneth Lange |
Publisher | Springer Science & Business Media |
Pages | 376 |
Release | 2012-12-06 |
Genre | Medical |
ISBN | 0387217509 |
Written to equip students in the mathematical siences to understand and model the epidemiological and experimental data encountered in genetics research. This second edition expands the original edition by over 100 pages and includes new material. Sprinkled throughout the chapters are many new problems.
Statistical Genetics
Title | Statistical Genetics PDF eBook |
Author | Benjamin Neale |
Publisher | Garland Science |
Pages | 608 |
Release | 2007-11-30 |
Genre | Science |
ISBN | 1134129335 |
Statistical Genetics is an advanced textbook focusing on conducting genome-wide linkage and association analysis in order to identify the genes responsible for complex behaviors and diseases. Starting with an introductory section on statistics and quantitative genetics, it covers both established and new methodologies, providing the genetic and statistical theory on which they are based. Each chapter is written by leading researchers, who give the reader the benefit of their experience with worked examples, study design, and sources of error. The text can be used in conjunction with an associated website (www.genemapping.org) that provides supplementary material and links to downloadable software.
Modern Multivariate Statistical Techniques
Title | Modern Multivariate Statistical Techniques PDF eBook |
Author | Alan J. Izenman |
Publisher | Springer Science & Business Media |
Pages | 757 |
Release | 2009-03-02 |
Genre | Mathematics |
ISBN | 0387781897 |
This is the first book on multivariate analysis to look at large data sets which describes the state of the art in analyzing such data. Material such as database management systems is included that has never appeared in statistics books before.