An Introduction to Neural Network Methods for Differential Equations

An Introduction to Neural Network Methods for Differential Equations
Title An Introduction to Neural Network Methods for Differential Equations PDF eBook
Author Neha Yadav
Publisher Springer
Pages 124
Release 2015-02-26
Genre Mathematics
ISBN 9401798168

Download An Introduction to Neural Network Methods for Differential Equations Book in PDF, Epub and Kindle

This book introduces a variety of neural network methods for solving differential equations arising in science and engineering. The emphasis is placed on a deep understanding of the neural network techniques, which has been presented in a mostly heuristic and intuitive manner. This approach will enable the reader to understand the working, efficiency and shortcomings of each neural network technique for solving differential equations. The objective of this book is to provide the reader with a sound understanding of the foundations of neural networks and a comprehensive introduction to neural network methods for solving differential equations together with recent developments in the techniques and their applications. The book comprises four major sections. Section I consists of a brief overview of differential equations and the relevant physical problems arising in science and engineering. Section II illustrates the history of neural networks starting from their beginnings in the 1940s through to the renewed interest of the 1980s. A general introduction to neural networks and learning technologies is presented in Section III. This section also includes the description of the multilayer perceptron and its learning methods. In Section IV, the different neural network methods for solving differential equations are introduced, including discussion of the most recent developments in the field. Advanced students and researchers in mathematics, computer science and various disciplines in science and engineering will find this book a valuable reference source.

Introduction to Neural Networks Using Matlab 6.0

Introduction to Neural Networks Using Matlab 6.0
Title Introduction to Neural Networks Using Matlab 6.0 PDF eBook
Author S. N. Sivanandam
Publisher Tata McGraw-Hill Education
Pages 0
Release 2006
Genre MATLAB.
ISBN 9780070591127

Download Introduction to Neural Networks Using Matlab 6.0 Book in PDF, Epub and Kindle

Neural Network Design

Neural Network Design
Title Neural Network Design PDF eBook
Author Martin T. Hagan
Publisher
Pages
Release 2003
Genre Neural networks (Computer science)
ISBN 9789812403766

Download Neural Network Design Book in PDF, Epub and Kindle

MATLAB Deep Learning

MATLAB Deep Learning
Title MATLAB Deep Learning PDF eBook
Author Phil Kim
Publisher Apress
Pages 162
Release 2017-06-15
Genre Computers
ISBN 1484228456

Download MATLAB Deep Learning Book in PDF, Epub and Kindle

Get started with MATLAB for deep learning and AI with this in-depth primer. In this book, you start with machine learning fundamentals, then move on to neural networks, deep learning, and then convolutional neural networks. In a blend of fundamentals and applications, MATLAB Deep Learning employs MATLAB as the underlying programming language and tool for the examples and case studies in this book. With this book, you'll be able to tackle some of today's real world big data, smart bots, and other complex data problems. You’ll see how deep learning is a complex and more intelligent aspect of machine learning for modern smart data analysis and usage. What You'll Learn Use MATLAB for deep learning Discover neural networks and multi-layer neural networks Work with convolution and pooling layers Build a MNIST example with these layers Who This Book Is For Those who want to learn deep learning using MATLAB. Some MATLAB experience may be useful.

An Introduction to Neural Networks

An Introduction to Neural Networks
Title An Introduction to Neural Networks PDF eBook
Author Kevin Gurney
Publisher CRC Press
Pages 234
Release 2018-10-08
Genre Computers
ISBN 1482286998

Download An Introduction to Neural Networks Book in PDF, Epub and Kindle

Though mathematical ideas underpin the study of neural networks, the author presents the fundamentals without the full mathematical apparatus. All aspects of the field are tackled, including artificial neurons as models of their real counterparts; the geometry of network action in pattern space; gradient descent methods, including back-propagation; associative memory and Hopfield nets; and self-organization and feature maps. The traditionally difficult topic of adaptive resonance theory is clarified within a hierarchical description of its operation. The book also includes several real-world examples to provide a concrete focus. This should enhance its appeal to those involved in the design, construction and management of networks in commercial environments and who wish to improve their understanding of network simulator packages. As a comprehensive and highly accessible introduction to one of the most important topics in cognitive and computer science, this volume should interest a wide range of readers, both students and professionals, in cognitive science, psychology, computer science and electrical engineering.

Neural Networks in Finance

Neural Networks in Finance
Title Neural Networks in Finance PDF eBook
Author Paul D. McNelis
Publisher Academic Press
Pages 262
Release 2005-01-05
Genre Business & Economics
ISBN 0124859674

Download Neural Networks in Finance Book in PDF, Epub and Kindle

This book explores the intuitive appeal of neural networks and the genetic algorithm in finance. It demonstrates how neural networks used in combination with evolutionary computation outperform classical econometric methods for accuracy in forecasting, classification and dimensionality reduction. McNelis utilizes a variety of examples, from forecasting automobile production and corporate bond spread, to inflation and deflation processes in Hong Kong and Japan, to credit card default in Germany to bank failures in Texas, to cap-floor volatilities in New York and Hong Kong. * Offers a balanced, critical review of the neural network methods and genetic algorithms used in finance * Includes numerous examples and applications * Numerical illustrations use MATLAB code and the book is accompanied by a website

Pulsed Neural Networks

Pulsed Neural Networks
Title Pulsed Neural Networks PDF eBook
Author Wolfgang Maass
Publisher MIT Press
Pages 414
Release 2001-01-26
Genre Computers
ISBN 9780262632218

Download Pulsed Neural Networks Book in PDF, Epub and Kindle

Most practical applications of artificial neural networks are based on a computational model involving the propagation of continuous variables from one processing unit to the next. In recent years, data from neurobiological experiments have made it increasingly clear that biological neural networks, which communicate through pulses, use the timing of the pulses to transmit information and perform computation. This realization has stimulated significant research on pulsed neural networks, including theoretical analyses and model development, neurobiological modeling, and hardware implementation. This book presents the complete spectrum of current research in pulsed neural networks and includes the most important work from many of the key scientists in the field. Terrence J. Sejnowski's foreword, "Neural Pulse Coding," presents an overview of the topic. The first half of the book consists of longer tutorial articles spanning neurobiology, theory, algorithms, and hardware. The second half contains a larger number of shorter research chapters that present more advanced concepts. The contributors use consistent notation and terminology throughout the book. Contributors Peter S. Burge, Stephen R. Deiss, Rodney J. Douglas, John G. Elias, Wulfram Gerstner, Alister Hamilton, David Horn, Axel Jahnke, Richard Kempter, Wolfgang Maass, Alessandro Mortara, Alan F. Murray, David P. M. Northmore, Irit Opher, Kostas A. Papathanasiou, Michael Recce, Barry J. P. Rising, Ulrich Roth, Tim Schönauer, Terrence J. Sejnowski, John Shawe-Taylor, Max R. van Daalen, J. Leo van Hemmen, Philippe Venier, Hermann Wagner, Adrian M. Whatley, Anthony M. Zador