Introduction to Matrix Analysis and Applications
Title | Introduction to Matrix Analysis and Applications PDF eBook |
Author | Fumio Hiai |
Publisher | Springer Science & Business Media |
Pages | 337 |
Release | 2014-02-06 |
Genre | Mathematics |
ISBN | 3319041509 |
Matrices can be studied in different ways. They are a linear algebraic structure and have a topological/analytical aspect (for example, the normed space of matrices) and they also carry an order structure that is induced by positive semidefinite matrices. The interplay of these closely related structures is an essential feature of matrix analysis. This book explains these aspects of matrix analysis from a functional analysis point of view. After an introduction to matrices and functional analysis, it covers more advanced topics such as matrix monotone functions, matrix means, majorization and entropies. Several applications to quantum information are also included. Introduction to Matrix Analysis and Applications is appropriate for an advanced graduate course on matrix analysis, particularly aimed at studying quantum information. It can also be used as a reference for researchers in quantum information, statistics, engineering and economics.
Introduction to Matrix Theory
Title | Introduction to Matrix Theory PDF eBook |
Author | Arindama Singh |
Publisher | Springer Nature |
Pages | 199 |
Release | 2021-08-16 |
Genre | Mathematics |
ISBN | 303080481X |
This book is designed to serve as a textbook for courses offered to undergraduate and postgraduate students enrolled in Mathematics. Using elementary row operations and Gram-Schmidt orthogonalization as basic tools the text develops characterization of equivalence and similarity, and various factorizations such as rank factorization, OR-factorization, Schurtriangularization, Diagonalization of normal matrices, Jordan decomposition, singular value decomposition, and polar decomposition. Along with Gauss-Jordan elimination for linear systems, it also discusses best approximations and least-squares solutions. The book includes norms on matrices as a means to deal with iterative solutions of linear systems and exponential of a matrix. The topics in the book are dealt with in a lively manner. Each section of the book has exercises to reinforce the concepts, and problems have been added at the end of each chapter. Most of these problems are theoretical, and they do not fit into the running text linearly. The detailed coverage and pedagogical tools make this an ideal textbook for students and researchers enrolled in senior undergraduate and beginning postgraduate mathematics courses.
Matrix Analysis for Statistics
Title | Matrix Analysis for Statistics PDF eBook |
Author | James R. Schott |
Publisher | John Wiley & Sons |
Pages | 547 |
Release | 2016-06-20 |
Genre | Mathematics |
ISBN | 1119092485 |
An up-to-date version of the complete, self-contained introduction to matrix analysis theory and practice Providing accessible and in-depth coverage of the most common matrix methods now used in statistical applications, Matrix Analysis for Statistics, Third Edition features an easy-to-follow theorem/proof format. Featuring smooth transitions between topical coverage, the author carefully justifies the step-by-step process of the most common matrix methods now used in statistical applications, including eigenvalues and eigenvectors; the Moore-Penrose inverse; matrix differentiation; and the distribution of quadratic forms. An ideal introduction to matrix analysis theory and practice, Matrix Analysis for Statistics, Third Edition features: • New chapter or section coverage on inequalities, oblique projections, and antieigenvalues and antieigenvectors • Additional problems and chapter-end practice exercises at the end of each chapter • Extensive examples that are familiar and easy to understand • Self-contained chapters for flexibility in topic choice • Applications of matrix methods in least squares regression and the analyses of mean vectors and covariance matrices Matrix Analysis for Statistics, Third Edition is an ideal textbook for upper-undergraduate and graduate-level courses on matrix methods, multivariate analysis, and linear models. The book is also an excellent reference for research professionals in applied statistics. James R. Schott, PhD, is Professor in the Department of Statistics at the University of Central Florida. He has published numerous journal articles in the area of multivariate analysis. Dr. Schott’s research interests include multivariate analysis, analysis of covariance and correlation matrices, and dimensionality reduction techniques.
Introduction to Matrix Analytic Methods in Stochastic Modeling
Title | Introduction to Matrix Analytic Methods in Stochastic Modeling PDF eBook |
Author | G. Latouche |
Publisher | SIAM |
Pages | 331 |
Release | 1999-01-01 |
Genre | Mathematics |
ISBN | 0898714257 |
Presents the basic mathematical ideas and algorithms of the matrix analytic theory in a readable, up-to-date, and comprehensive manner.
Matrix Analysis and Applications
Title | Matrix Analysis and Applications PDF eBook |
Author | Xian-Da Zhang |
Publisher | Cambridge University Press |
Pages | 761 |
Release | 2017-10-05 |
Genre | Computers |
ISBN | 1108417418 |
The theory, methods and applications of matrix analysis are presented here in a novel theoretical framework.
Introduction to Linear and Matrix Algebra
Title | Introduction to Linear and Matrix Algebra PDF eBook |
Author | Nathaniel Johnston |
Publisher | Springer Nature |
Pages | 482 |
Release | 2021-05-19 |
Genre | Mathematics |
ISBN | 3030528111 |
This textbook emphasizes the interplay between algebra and geometry to motivate the study of linear algebra. Matrices and linear transformations are presented as two sides of the same coin, with their connection motivating inquiry throughout the book. By focusing on this interface, the author offers a conceptual appreciation of the mathematics that is at the heart of further theory and applications. Those continuing to a second course in linear algebra will appreciate the companion volume Advanced Linear and Matrix Algebra. Starting with an introduction to vectors, matrices, and linear transformations, the book focuses on building a geometric intuition of what these tools represent. Linear systems offer a powerful application of the ideas seen so far, and lead onto the introduction of subspaces, linear independence, bases, and rank. Investigation then focuses on the algebraic properties of matrices that illuminate the geometry of the linear transformations that they represent. Determinants, eigenvalues, and eigenvectors all benefit from this geometric viewpoint. Throughout, “Extra Topic” sections augment the core content with a wide range of ideas and applications, from linear programming, to power iteration and linear recurrence relations. Exercises of all levels accompany each section, including many designed to be tackled using computer software. Introduction to Linear and Matrix Algebra is ideal for an introductory proof-based linear algebra course. The engaging color presentation and frequent marginal notes showcase the author’s visual approach. Students are assumed to have completed one or two university-level mathematics courses, though calculus is not an explicit requirement. Instructors will appreciate the ample opportunities to choose topics that align with the needs of each classroom, and the online homework sets that are available through WeBWorK.
Matrix Theory
Title | Matrix Theory PDF eBook |
Author | Fuzhen Zhang |
Publisher | Springer Science & Business Media |
Pages | 290 |
Release | 2013-03-14 |
Genre | Mathematics |
ISBN | 1475757972 |
This volume concisely presents fundamental ideas, results, and techniques in linear algebra and mainly matrix theory. Each chapter focuses on the results, techniques, and methods that are beautiful, interesting, and representative, followed by carefully selected problems. For many theorems several different proofs are given. The only prerequisites are a decent background in elementary linear algebra and calculus.