Introduction to Mathematical Elasticity
Title | Introduction to Mathematical Elasticity PDF eBook |
Author | L. P. Lebedev |
Publisher | World Scientific |
Pages | 317 |
Release | 2009 |
Genre | Technology & Engineering |
ISBN | 9814273724 |
This book provides the general reader with an introduction to mathematical elasticity, by means of general concepts in classic mechanics, and models for elastic springs, strings, rods, beams and membranes. Functional analysis is also used to explore more general boundary value problems for three-dimensional elastic bodies, where the reader is provided, for each problem considered, a description of the deformation; the equilibrium in terms of stresses; the constitutive equation; the equilibrium equation in terms of displacements; formulation of boundary value problems; and variational principles, generalized solutions and conditions for solvability.Introduction to Mathematical Elasticity will also be of essential reference to engineers specializing in elasticity, and to mathematicians working on abstract formulations of the related boundary value problems.
An Introduction to the Mathematical Theory of Vibrations of Elastic Plates
Title | An Introduction to the Mathematical Theory of Vibrations of Elastic Plates PDF eBook |
Author | Raymond David Mindlin |
Publisher | World Scientific |
Pages | 211 |
Release | 2006 |
Genre | Technology & Engineering |
ISBN | 9812772499 |
This book by the late R D Mindlin is destined to become a classic introduction to the mathematical aspects of two-dimensional theories of elastic plates. It systematically derives the two-dimensional theories of anisotropic elastic plates from the variational formulation of the three-dimensional theory of elasticity by power series expansions. The uniqueness of two-dimensional problems is also examined from the variational viewpoint. The accuracy of the two-dimensional equations is judged by comparing the dispersion relations of the waves that the two-dimensional theories can describe with prediction from the three-dimensional theory. Discussing mainly high-frequency dynamic problems, it is also useful in traditional applications in structural engineering as well as provides the theoretical foundation for acoustic wave devices. Sample Chapter(s). Chapter 1: Elements of the Linear Theory of Elasticity (416 KB). Contents: Elements of the Linear Theory of Elasticity; Solutions of the Three-Dimensional Equations; Infinite Power Series of Two-Dimensional Equations; Zero-Order Approximation; First-Order Approximation; Intermediate Approximations. Readership: Researchers in mechanics, civil and mechanical engineering and applied mathematics.
An Introduction to the Theory of Elasticity
Title | An Introduction to the Theory of Elasticity PDF eBook |
Author | R. J. Atkin |
Publisher | Courier Corporation |
Pages | 272 |
Release | 2013-02-20 |
Genre | Science |
ISBN | 0486150992 |
Accessible text covers deformation and stress, derivation of equations of finite elasticity, and formulation of infinitesimal elasticity with application to two- and three-dimensional static problems and elastic waves. 1980 edition.
Three-Dimensional Elasticity
Title | Three-Dimensional Elasticity PDF eBook |
Author | |
Publisher | Elsevier |
Pages | 495 |
Release | 1988-04-01 |
Genre | Technology & Engineering |
ISBN | 0080875416 |
This volume is a thorough introduction to contemporary research in elasticity, and may be used as a working textbook at the graduate level for courses in pure or applied mathematics or in continuum mechanics. It provides a thorough description (with emphasis on the nonlinear aspects) of the two competing mathematical models of three-dimensional elasticity, together with a mathematical analysis of these models. The book is as self-contained as possible.
Mathematical Foundations of Elasticity
Title | Mathematical Foundations of Elasticity PDF eBook |
Author | Jerrold E. Marsden |
Publisher | Courier Corporation |
Pages | 578 |
Release | 2012-10-25 |
Genre | Technology & Engineering |
ISBN | 0486142272 |
Graduate-level study approaches mathematical foundations of three-dimensional elasticity using modern differential geometry and functional analysis. It presents a classical subject in a modern setting, with examples of newer mathematical contributions. 1983 edition.
A Treatise on the Mathematical Theory of Elasticity
Title | A Treatise on the Mathematical Theory of Elasticity PDF eBook |
Author | Augustus Edward Hough Love |
Publisher | |
Pages | 674 |
Release | 1927 |
Genre | Elasticity |
ISBN |
An Introduction to Differential Geometry with Applications to Elasticity
Title | An Introduction to Differential Geometry with Applications to Elasticity PDF eBook |
Author | Philippe G. Ciarlet |
Publisher | Springer Science & Business Media |
Pages | 212 |
Release | 2006-06-28 |
Genre | Technology & Engineering |
ISBN | 1402042485 |
curvilinear coordinates. This treatment includes in particular a direct proof of the three-dimensional Korn inequality in curvilinear coordinates. The fourth and last chapter, which heavily relies on Chapter 2, begins by a detailed description of the nonlinear and linear equations proposed by W.T. Koiter for modeling thin elastic shells. These equations are “two-dimensional”, in the sense that they are expressed in terms of two curvilinear coordinates used for de?ning the middle surface of the shell. The existence, uniqueness, and regularity of solutions to the linear Koiter equations is then established, thanks this time to a fundamental “Korn inequality on a surface” and to an “in?nit- imal rigid displacement lemma on a surface”. This chapter also includes a brief introduction to other two-dimensional shell equations. Interestingly, notions that pertain to di?erential geometry per se,suchas covariant derivatives of tensor ?elds, are also introduced in Chapters 3 and 4, where they appear most naturally in the derivation of the basic boundary value problems of three-dimensional elasticity and shell theory. Occasionally, portions of the material covered here are adapted from - cerpts from my book “Mathematical Elasticity, Volume III: Theory of Shells”, published in 2000by North-Holland, Amsterdam; in this respect, I am indebted to Arjen Sevenster for his kind permission to rely on such excerpts. Oth- wise, the bulk of this work was substantially supported by two grants from the Research Grants Council of Hong Kong Special Administrative Region, China [Project No. 9040869, CityU 100803 and Project No. 9040966, CityU 100604].