Introduction to Infinity-Categories

Introduction to Infinity-Categories
Title Introduction to Infinity-Categories PDF eBook
Author Markus Land
Publisher Springer Nature
Pages 300
Release 2021-04-21
Genre Mathematics
ISBN 3030615243

Download Introduction to Infinity-Categories Book in PDF, Epub and Kindle

This textbook is an introduction to the theory of infinity-categories, a tool used in many aspects of modern pure mathematics. It treats the basics of the theory and supplies all the necessary details while leading the reader along a streamlined path from the basic definitions to more advanced results such as the very important adjoint functor theorems. The book is based on lectures given by the author on the topic. While the material itself is well-known to experts, the presentation of the material is, in parts, novel and accessible to non-experts. Exercises complement this textbook that can be used both in a classroom setting at the graduate level and as an introductory text for the interested reader.

Introduction to Infinity-Categories

Introduction to Infinity-Categories
Title Introduction to Infinity-Categories PDF eBook
Author Markus Land
Publisher Birkhäuser
Pages 296
Release 2021-04-22
Genre Mathematics
ISBN 9783030615239

Download Introduction to Infinity-Categories Book in PDF, Epub and Kindle

This textbook is an introduction to the theory of infinity-categories, a tool used in many aspects of modern pure mathematics. It treats the basics of the theory and supplies all the necessary details while leading the reader along a streamlined path from the basic definitions to more advanced results such as the very important adjoint functor theorems. The book is based on lectures given by the author on the topic. While the material itself is well-known to experts, the presentation of the material is, in parts, novel and accessible to non-experts. Exercises complement this textbook that can be used both in a classroom setting at the graduate level and as an introductory text for the interested reader.

Elements of ∞-Category Theory

Elements of ∞-Category Theory
Title Elements of ∞-Category Theory PDF eBook
Author Emily Riehl
Publisher Cambridge University Press
Pages 782
Release 2022-02-10
Genre Mathematics
ISBN 1108952194

Download Elements of ∞-Category Theory Book in PDF, Epub and Kindle

The language of ∞-categories provides an insightful new way of expressing many results in higher-dimensional mathematics but can be challenging for the uninitiated. To explain what exactly an ∞-category is requires various technical models, raising the question of how they might be compared. To overcome this, a model-independent approach is desired, so that theorems proven with any model would apply to them all. This text develops the theory of ∞-categories from first principles in a model-independent fashion using the axiomatic framework of an ∞-cosmos, the universe in which ∞-categories live as objects. An ∞-cosmos is a fertile setting for the formal category theory of ∞-categories, and in this way the foundational proofs in ∞-category theory closely resemble the classical foundations of ordinary category theory. Equipped with exercises and appendices with background material, this first introduction is meant for students and researchers who have a strong foundation in classical 1-category theory.

Categories for the Working Mathematician

Categories for the Working Mathematician
Title Categories for the Working Mathematician PDF eBook
Author Saunders Mac Lane
Publisher Springer Science & Business Media
Pages 320
Release 2013-04-17
Genre Mathematics
ISBN 1475747217

Download Categories for the Working Mathematician Book in PDF, Epub and Kindle

An array of general ideas useful in a wide variety of fields. Starting from the foundations, this book illuminates the concepts of category, functor, natural transformation, and duality. It then turns to adjoint functors, which provide a description of universal constructions, an analysis of the representations of functors by sets of morphisms, and a means of manipulating direct and inverse limits. These categorical concepts are extensively illustrated in the remaining chapters, which include many applications of the basic existence theorem for adjoint functors. The categories of algebraic systems are constructed from certain adjoint-like data and characterised by Beck's theorem. After considering a variety of applications, the book continues with the construction and exploitation of Kan extensions. This second edition includes a number of revisions and additions, including new chapters on topics of active interest: symmetric monoidal categories and braided monoidal categories, and the coherence theorems for them, as well as 2-categories and the higher dimensional categories which have recently come into prominence.

Basic Category Theory

Basic Category Theory
Title Basic Category Theory PDF eBook
Author Tom Leinster
Publisher Cambridge University Press
Pages 193
Release 2014-07-24
Genre Mathematics
ISBN 1107044243

Download Basic Category Theory Book in PDF, Epub and Kindle

A short introduction ideal for students learning category theory for the first time.

Category Theory in Context

Category Theory in Context
Title Category Theory in Context PDF eBook
Author Emily Riehl
Publisher Courier Dover Publications
Pages 273
Release 2017-03-09
Genre Mathematics
ISBN 0486820807

Download Category Theory in Context Book in PDF, Epub and Kindle

Introduction to concepts of category theory — categories, functors, natural transformations, the Yoneda lemma, limits and colimits, adjunctions, monads — revisits a broad range of mathematical examples from the categorical perspective. 2016 edition.

The Homotopy Theory of (∞,1)-Categories

The Homotopy Theory of (∞,1)-Categories
Title The Homotopy Theory of (∞,1)-Categories PDF eBook
Author Julia E. Bergner
Publisher Cambridge University Press
Pages 290
Release 2018-03-15
Genre Mathematics
ISBN 1108565042

Download The Homotopy Theory of (∞,1)-Categories Book in PDF, Epub and Kindle

The notion of an (∞,1)-category has become widely used in homotopy theory, category theory, and in a number of applications. There are many different approaches to this structure, all of them equivalent, and each with its corresponding homotopy theory. This book provides a relatively self-contained source of the definitions of the different models, the model structure (homotopy theory) of each, and the equivalences between the models. While most of the current literature focusses on how to extend category theory in this context, and centers in particular on the quasi-category model, this book offers a balanced treatment of the appropriate model structures for simplicial categories, Segal categories, complete Segal spaces, quasi-categories, and relative categories, all from a homotopy-theoretic perspective. Introductory chapters provide background in both homotopy and category theory and contain many references to the literature, thus making the book accessible to graduates and to researchers in related areas.