Introduction to Evolutionary Computing
Title | Introduction to Evolutionary Computing PDF eBook |
Author | A.E. Eiben |
Publisher | Springer Science & Business Media |
Pages | 328 |
Release | 2007-08-06 |
Genre | Computers |
ISBN | 9783540401841 |
The first complete overview of evolutionary computing, the collective name for a range of problem-solving techniques based on principles of biological evolution, such as natural selection and genetic inheritance. The text is aimed directly at lecturers and graduate and undergraduate students. It is also meant for those who wish to apply evolutionary computing to a particular problem or within a given application area. The book contains quick-reference information on the current state-of-the-art in a wide range of related topics, so it is of interest not just to evolutionary computing specialists but to researchers working in other fields.
Introduction to Evolutionary Algorithms
Title | Introduction to Evolutionary Algorithms PDF eBook |
Author | Xinjie Yu |
Publisher | Springer Science & Business Media |
Pages | 427 |
Release | 2010-06-10 |
Genre | Computers |
ISBN | 1849961298 |
Evolutionary algorithms are becoming increasingly attractive across various disciplines, such as operations research, computer science, industrial engineering, electrical engineering, social science and economics. Introduction to Evolutionary Algorithms presents an insightful, comprehensive, and up-to-date treatment of evolutionary algorithms. It covers such hot topics as: • genetic algorithms, • differential evolution, • swarm intelligence, and • artificial immune systems. The reader is introduced to a range of applications, as Introduction to Evolutionary Algorithms demonstrates how to model real world problems, how to encode and decode individuals, and how to design effective search operators according to the chromosome structures with examples of constraint optimization, multiobjective optimization, combinatorial optimization, and supervised/unsupervised learning. This emphasis on practical applications will benefit all students, whether they choose to continue their academic career or to enter a particular industry. Introduction to Evolutionary Algorithms is intended as a textbook or self-study material for both advanced undergraduates and graduate students. Additional features such as recommended further reading and ideas for research projects combine to form an accessible and interesting pedagogical approach to this widely used discipline.
An Introduction to Genetic Algorithms
Title | An Introduction to Genetic Algorithms PDF eBook |
Author | Melanie Mitchell |
Publisher | MIT Press |
Pages | 226 |
Release | 1998-03-02 |
Genre | Computers |
ISBN | 9780262631853 |
Genetic algorithms have been used in science and engineering as adaptive algorithms for solving practical problems and as computational models of natural evolutionary systems. This brief, accessible introduction describes some of the most interesting research in the field and also enables readers to implement and experiment with genetic algorithms on their own. It focuses in depth on a small set of important and interesting topics—particularly in machine learning, scientific modeling, and artificial life—and reviews a broad span of research, including the work of Mitchell and her colleagues. The descriptions of applications and modeling projects stretch beyond the strict boundaries of computer science to include dynamical systems theory, game theory, molecular biology, ecology, evolutionary biology, and population genetics, underscoring the exciting "general purpose" nature of genetic algorithms as search methods that can be employed across disciplines. An Introduction to Genetic Algorithms is accessible to students and researchers in any scientific discipline. It includes many thought and computer exercises that build on and reinforce the reader's understanding of the text. The first chapter introduces genetic algorithms and their terminology and describes two provocative applications in detail. The second and third chapters look at the use of genetic algorithms in machine learning (computer programs, data analysis and prediction, neural networks) and in scientific models (interactions among learning, evolution, and culture; sexual selection; ecosystems; evolutionary activity). Several approaches to the theory of genetic algorithms are discussed in depth in the fourth chapter. The fifth chapter takes up implementation, and the last chapter poses some currently unanswered questions and surveys prospects for the future of evolutionary computation.
Introduction to Genetic Algorithms
Title | Introduction to Genetic Algorithms PDF eBook |
Author | S.N. Sivanandam |
Publisher | Springer Science & Business Media |
Pages | 453 |
Release | 2007-10-24 |
Genre | Technology & Engineering |
ISBN | 3540731903 |
This book offers a basic introduction to genetic algorithms. It provides a detailed explanation of genetic algorithm concepts and examines numerous genetic algorithm optimization problems. In addition, the book presents implementation of optimization problems using C and C++ as well as simulated solutions for genetic algorithm problems using MATLAB 7.0. It also includes application case studies on genetic algorithms in emerging fields.
Applied Evolutionary Algorithms in Java
Title | Applied Evolutionary Algorithms in Java PDF eBook |
Author | Robert Ghanea-Hercock |
Publisher | Springer Science & Business Media |
Pages | 232 |
Release | 2013-03-20 |
Genre | Computers |
ISBN | 0387216154 |
This book is intended for students, researchers, and professionals interested in evolutionary algorithms at graduate and postgraduate level. No mathematics beyond basic algebra and Cartesian graphs methods is required, as the aim is to encourage applying the JAVA toolkit to develop an appreciation of the power of these techniques.
Evolutionary Computation
Title | Evolutionary Computation PDF eBook |
Author | Kenneth A. De Jong |
Publisher | MIT Press |
Pages | 267 |
Release | 2006-02-03 |
Genre | Computers |
ISBN | 0262303337 |
A clear and comprehensive introduction to the field of evolutionary computation that takes an integrated approach. Evolutionary computation, the use of evolutionary systems as computational processes for solving complex problems, is a tool used by computer scientists and engineers who want to harness the power of evolution to build useful new artifacts, by biologists interested in developing and testing better models of natural evolutionary systems, and by artificial life scientists for designing and implementing new artificial evolutionary worlds. In this clear and comprehensive introduction to the field, Kenneth De Jong presents an integrated view of the state of the art in evolutionary computation. Although other books have described such particular areas of the field as genetic algorithms, genetic programming, evolution strategies, and evolutionary programming, Evolutionary Computation is noteworthy for considering these systems as specific instances of a more general class of evolutionary algorithms. This useful overview of a fragmented field is suitable for classroom use or as a reference for computer scientists and engineers.
Evolutionary Optimization Algorithms
Title | Evolutionary Optimization Algorithms PDF eBook |
Author | Dan Simon |
Publisher | John Wiley & Sons |
Pages | 776 |
Release | 2013-06-13 |
Genre | Mathematics |
ISBN | 1118659503 |
A clear and lucid bottom-up approach to the basic principles of evolutionary algorithms Evolutionary algorithms (EAs) are a type of artificial intelligence. EAs are motivated by optimization processes that we observe in nature, such as natural selection, species migration, bird swarms, human culture, and ant colonies. This book discusses the theory, history, mathematics, and programming of evolutionary optimization algorithms. Featured algorithms include genetic algorithms, genetic programming, ant colony optimization, particle swarm optimization, differential evolution, biogeography-based optimization, and many others. Evolutionary Optimization Algorithms: Provides a straightforward, bottom-up approach that assists the reader in obtaining a clear but theoretically rigorous understanding of evolutionary algorithms, with an emphasis on implementation Gives a careful treatment of recently developed EAs including opposition-based learning, artificial fish swarms, bacterial foraging, and many others and discusses their similarities and differences from more well-established EAs Includes chapter-end problems plus a solutions manual available online for instructors Offers simple examples that provide the reader with an intuitive understanding of the theory Features source code for the examples available on the author's website Provides advanced mathematical techniques for analyzing EAs, including Markov modeling and dynamic system modeling Evolutionary Optimization Algorithms: Biologically Inspired and Population-Based Approaches to Computer Intelligence is an ideal text for advanced undergraduate students, graduate students, and professionals involved in engineering and computer science.