An Introduction to Information Processing
Title | An Introduction to Information Processing PDF eBook |
Author | Harvey M. Dietel |
Publisher | Academic Press |
Pages | 480 |
Release | 2014-06-28 |
Genre | Computers |
ISBN | 148321401X |
An Introduction to Information Processing provides an informal introduction to the computer field. This book introduces computer hardware, which is the actual computing equipment. Organized into three parts encompassing 12 chapters, this book begins with an overview of the evolution of personal computing and includes detailed case studies on two of the most essential personal computers for the 1980s, namely, the IBM Personal Computer and Apple's Macintosh. This text then traces the evolution of modern computing systems from the earliest mechanical calculating devices to microchips. Other chapters consider the components and operation of typical data communications systems. This book discusses as well the various types of communications networks and communications via space satellites. The final chapter deals with software or computer programs, the sets of instructions that programmers write to inform the computer how to solve particular problems. This book is a valuable resource for computer specialists, mathematicians, and computer programmers.
Introduction to Computers and Information Processing
Title | Introduction to Computers and Information Processing PDF eBook |
Author | Larry E. Long |
Publisher | Englewood Cliffs, N.J. : Prentice-Hall |
Pages | 600 |
Release | 1984 |
Genre | Computers |
ISBN |
Introduction to Computing
Title | Introduction to Computing PDF eBook |
Author | David Evans |
Publisher | |
Pages | 300 |
Release | 2011-12-07 |
Genre | |
ISBN | 9780983455752 |
Introduction to Computing is a comprehensive text designed for the CS0 (Intro to CS) course at the college level. It may also be used as a primary text for the Advanced Placement Computer Science course at the high school level.
Introduction to Optical Quantum Information Processing
Title | Introduction to Optical Quantum Information Processing PDF eBook |
Author | Pieter Kok |
Publisher | Cambridge University Press |
Pages | 505 |
Release | 2010-04-22 |
Genre | Science |
ISBN | 1139486438 |
Quantum information processing offers fundamental improvements over classical information processing, such as computing power, secure communication, and high-precision measurements. However, the best way to create practical devices is not yet known. This textbook describes the techniques that are likely to be used in implementing optical quantum information processors. After developing the fundamental concepts in quantum optics and quantum information theory, the book shows how optical systems can be used to build quantum computers according to the most recent ideas. It discusses implementations based on single photons and linear optics, optically controlled atoms and solid-state systems, atomic ensembles, and optical continuous variables. This book is ideal for graduate students beginning research in optical quantum information processing. It presents the most important techniques of the field using worked examples and over 120 exercises.
Introduction to Computers and Information Technology
Title | Introduction to Computers and Information Technology PDF eBook |
Author | Emergent Emergent Learning |
Publisher | Pearson |
Pages | 0 |
Release | 2015-09-21 |
Genre | Computer literacy |
ISBN | 9781323144183 |
Introduction to Computers and Information Technology teaches essential computer technology concepts and skills. This text helps students build a concrete understanding of how computers work and how various types of computing devices and accessories are used in school, work, and at home. The text covers objectives of IC3 GS5 and IC3 Spark standards.
Introduction to Visual Computing
Title | Introduction to Visual Computing PDF eBook |
Author | Aditi Majumder |
Publisher | CRC Press |
Pages | 376 |
Release | 2018-01-31 |
Genre | Computers |
ISBN | 1482244926 |
Introduction to Visual Computing: Core Concepts in Computer Vision, Graphics, and Image Processing covers the fundamental concepts of visual computing. Whereas past books have treated these concepts within the context of specific fields such as computer graphics, computer vision or image processing, this book offers a unified view of these core concepts, thereby providing a unified treatment of computational and mathematical methods for creating, capturing, analyzing and manipulating visual data (e.g. 2D images, 3D models). Fundamentals covered in the book include convolution, Fourier transform, filters, geometric transformations, epipolar geometry, 3D reconstruction, color and the image synthesis pipeline. The book is organized in four parts. The first part provides an exposure to different kinds of visual data (e.g. 2D images, videos and 3D geometry) and the core mathematical techniques that are required for their processing (e.g. interpolation and linear regression.) The second part of the book on Image Based Visual Computing deals with several fundamental techniques to process 2D images (e.g. convolution, spectral analysis and feature detection) and corresponds to the low level retinal image processing that happens in the eye in the human visual system pathway. The next part of the book on Geometric Visual Computing deals with the fundamental techniques used to combine the geometric information from multiple eyes creating a 3D interpretation of the object and world around us (e.g. transformations, projective and epipolar geometry, and 3D reconstruction). This corresponds to the higher level processing that happens in the brain combining information from both the eyes thereby helping us to navigate through the 3D world around us. The last two parts of the book cover Radiometric Visual Computing and Visual Content Synthesis. These parts focus on the fundamental techniques for processing information arising from the interaction of light with objects around us, as well as the fundamentals of creating virtual computer generated worlds that mimic all the processing presented in the prior sections. The book is written for a 16 week long semester course and can be used for both undergraduate and graduate teaching, as well as a reference for professionals.
Quantum Information Processing and Quantum Error Correction
Title | Quantum Information Processing and Quantum Error Correction PDF eBook |
Author | Ivan Djordjevic |
Publisher | Academic Press |
Pages | 597 |
Release | 2012-04-16 |
Genre | Computers |
ISBN | 0123854911 |
Quantum Information Processing and Quantum Error Correction is a self-contained, tutorial-based introduction to quantum information, quantum computation, and quantum error-correction. Assuming no knowledge of quantum mechanics and written at an intuitive level suitable for the engineer, the book gives all the essential principles needed to design and implement quantum electronic and photonic circuits. Numerous examples from a wide area of application are given to show how the principles can be implemented in practice. This book is ideal for the electronics, photonics and computer engineer who requires an easy- to-understand foundation on the principles of quantum information processing and quantum error correction, together with insight into how to develop quantum electronic and photonic circuits. Readers of this book will be ready for further study in this area, and will be prepared to perform independent research. The reader completed the book will be able design the information processing circuits, stabilizer codes, Calderbank-Shor-Steane (CSS) codes, subsystem codes, topological codes and entanglement-assisted quantum error correction codes; and propose corresponding physical implementation. The reader completed the book will be proficient in quantum fault-tolerant design as well. Unique Features Unique in covering both quantum information processing and quantum error correction - everything in one book that an engineer needs to understand and implement quantum-level circuits. Gives an intuitive understanding by not assuming knowledge of quantum mechanics, thereby avoiding heavy mathematics. In-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits. Provides the right balance among the quantum mechanics, quantum error correction, quantum computing and quantum communication. Dr. Djordjevic is an Assistant Professor in the Department of Electrical and Computer Engineering of College of Engineering, University of Arizona, with a joint appointment in the College of Optical Sciences. Prior to this appointment in August 2006, he was with University of Arizona, Tucson, USA (as a Research Assistant Professor); University of the West of England, Bristol, UK; University of Bristol, Bristol, UK; Tyco Telecommunications, Eatontown, USA; and National Technical University of Athens, Athens, Greece. His current research interests include optical networks, error control coding, constrained coding, coded modulation, turbo equalization, OFDM applications, and quantum error correction. He presently directs the Optical Communications Systems Laboratory (OCSL) within the ECE Department at the University of Arizona. Provides everything an engineer needs in one tutorial-based introduction to understand and implement quantum-level circuits Avoids the heavy use of mathematics by not assuming the previous knowledge of quantum mechanics Provides in-depth coverage of the design and implementation of quantum information processing and quantum error correction circuits