Introduction to Computational Modeling Using C and Open-Source Tools

Introduction to Computational Modeling Using C and Open-Source Tools
Title Introduction to Computational Modeling Using C and Open-Source Tools PDF eBook
Author Jose M. Garrido
Publisher CRC Press
Pages 463
Release 2013-11-13
Genre Computers
ISBN 1482216787

Download Introduction to Computational Modeling Using C and Open-Source Tools Book in PDF, Epub and Kindle

Introduction to Computational Modeling Using C and Open-Source Tools presents the fundamental principles of computational models from a computer science perspective. It explains how to implement these models using the C programming language. The software tools used in the book include the Gnu Scientific Library (GSL), which is a free software library of C functions, and the versatile, open-source GnuPlot for visualizing the data. All source files, shell scripts, and additional notes are located at science.kennesaw.edu/~jgarrido/comp_models The book first presents an overview of problem solving and the introductory concepts, principles, and development of computational models before covering the programming principles of the C programming language. The author then applies programming principles and basic numerical techniques, such as polynomial evaluation, regression, and other numerical methods, to implement computational models. He also discusses more advanced concepts needed for modeling dynamical systems and explains how to generate numerical solutions. The book concludes with the modeling of linear optimization problems. Emphasizing analytical skill development and problem solving, this book helps you understand how to reason about and conceptualize the problems, generate mathematical formulations, and computationally visualize and solve the problems. It provides you with the foundation to understand more advanced scientific computing, including parallel computing using MPI, grid computing, and other techniques in high-performance computing.

Introduction to Computational Modeling Using C and Open-Source Tools

Introduction to Computational Modeling Using C and Open-Source Tools
Title Introduction to Computational Modeling Using C and Open-Source Tools PDF eBook
Author Jose M. Garrido
Publisher CRC Press
Pages 458
Release 2013-11-13
Genre Computers
ISBN 1482216795

Download Introduction to Computational Modeling Using C and Open-Source Tools Book in PDF, Epub and Kindle

Introduction to Computational Modeling Using C and Open-Source Tools presents the fundamental principles of computational models from a computer science perspective. It explains how to implement these models using the C programming language. The software tools used in the book include the Gnu Scientific Library (GSL), which is a free software libra

Introduction to Computational Models with Python

Introduction to Computational Models with Python
Title Introduction to Computational Models with Python PDF eBook
Author Jose M. Garrido
Publisher CRC Press
Pages 492
Release 2015-08-28
Genre Computers
ISBN 1498712045

Download Introduction to Computational Models with Python Book in PDF, Epub and Kindle

Introduction to Computational Models with Python explains how to implement computational models using the flexible and easy-to-use Python programming language. The book uses the Python programming language interpreter and several packages from the huge Python Library that improve the performance of numerical computing, such as the Numpy and Scipy m

Introduction to Computation and Programming Using Python, second edition

Introduction to Computation and Programming Using Python, second edition
Title Introduction to Computation and Programming Using Python, second edition PDF eBook
Author John V. Guttag
Publisher MIT Press
Pages 466
Release 2016-08-12
Genre Computers
ISBN 0262529629

Download Introduction to Computation and Programming Using Python, second edition Book in PDF, Epub and Kindle

The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.

Software Engineering for Science

Software Engineering for Science
Title Software Engineering for Science PDF eBook
Author Jeffrey C. Carver
Publisher CRC Press
Pages 311
Release 2016-11-03
Genre Computers
ISBN 1498743862

Download Software Engineering for Science Book in PDF, Epub and Kindle

Software Engineering for Science provides an in-depth collection of peer-reviewed chapters that describe experiences with applying software engineering practices to the development of scientific software. It provides a better understanding of how software engineering is and should be practiced, and which software engineering practices are effective for scientific software. The book starts with a detailed overview of the Scientific Software Lifecycle, and a general overview of the scientific software development process. It highlights key issues commonly arising during scientific software development, as well as solutions to these problems. The second part of the book provides examples of the use of testing in scientific software development, including key issues and challenges. The chapters then describe solutions and case studies aimed at applying testing to scientific software development efforts. The final part of the book provides examples of applying software engineering techniques to scientific software, including not only computational modeling, but also software for data management and analysis. The authors describe their experiences and lessons learned from developing complex scientific software in different domains. About the Editors Jeffrey Carver is an Associate Professor in the Department of Computer Science at the University of Alabama. He is one of the primary organizers of the workshop series on Software Engineering for Science (http://www.SE4Science.org/workshops). Neil P. Chue Hong is Director of the Software Sustainability Institute at the University of Edinburgh. His research interests include barriers and incentives in research software ecosystems and the role of software as a research object. George K. Thiruvathukal is Professor of Computer Science at Loyola University Chicago and Visiting Faculty at Argonne National Laboratory. His current research is focused on software metrics in open source mathematical and scientific software.

Programming for Hybrid Multi/Manycore MPP Systems

Programming for Hybrid Multi/Manycore MPP Systems
Title Programming for Hybrid Multi/Manycore MPP Systems PDF eBook
Author John Levesque
Publisher CRC Press
Pages 322
Release 2017-10-10
Genre Computers
ISBN 1351643363

Download Programming for Hybrid Multi/Manycore MPP Systems Book in PDF, Epub and Kindle

"Ask not what your compiler can do for you, ask what you can do for your compiler." --John Levesque, Director of Cray’s Supercomputing Centers of Excellence The next decade of computationally intense computing lies with more powerful multi/manycore nodes where processors share a large memory space. These nodes will be the building block for systems that range from a single node workstation up to systems approaching the exaflop regime. The node itself will consist of 10’s to 100’s of MIMD (multiple instruction, multiple data) processing units with SIMD (single instruction, multiple data) parallel instructions. Since a standard, affordable memory architecture will not be able to supply the bandwidth required by these cores, new memory organizations will be introduced. These new node architectures will represent a significant challenge to application developers. Programming for Hybrid Multi/Manycore MPP Systems attempts to briefly describe the current state-of-the-art in programming these systems, and proposes an approach for developing a performance-portable application that can effectively utilize all of these systems from a single application. The book starts with a strategy for optimizing an application for multi/manycore architectures. It then looks at the three typical architectures, covering their advantages and disadvantages. The next section of the book explores the other important component of the target—the compiler. The compiler will ultimately convert the input language to executable code on the target, and the book explores how to make the compiler do what we want. The book then talks about gathering runtime statistics from running the application on the important problem sets previously discussed. How best to utilize available memory bandwidth and virtualization is covered next, along with hybridization of a program. The last part of the book includes several major applications, and examines future hardware advancements and how the application developer may prepare for those advancements.

Exascale Scientific Applications

Exascale Scientific Applications
Title Exascale Scientific Applications PDF eBook
Author Tjerk P. Straatsma
Publisher CRC Press
Pages 607
Release 2017-11-13
Genre Computers
ISBN 1351999249

Download Exascale Scientific Applications Book in PDF, Epub and Kindle

Describes practical programming approaches for scientific applications on exascale computer systems Presents strategies to make applications performance portable Provides specific solutions employed in current application porting and development Illustrates domain science software development strategies based on projected trends in supercomputing technology and architectures Includes contributions from leading experts involved in the development and porting of scientific codes for current and future high performance computing resources