Introduction to Computation and Programming Using Python, second edition
Title | Introduction to Computation and Programming Using Python, second edition PDF eBook |
Author | John V. Guttag |
Publisher | MIT Press |
Pages | 466 |
Release | 2016-08-12 |
Genre | Computers |
ISBN | 0262529629 |
The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.
Introduction to Computation and Programming Using Python, second edition
Title | Introduction to Computation and Programming Using Python, second edition PDF eBook |
Author | John V. Guttag |
Publisher | MIT Press |
Pages | 466 |
Release | 2016-08-08 |
Genre | Computers |
ISBN | 0262337398 |
The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization. This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters. Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.
Introduction to Computation and Programming Using Python
Title | Introduction to Computation and Programming Using Python PDF eBook |
Author | John V. Guttag |
Publisher | MIT Press |
Pages | 315 |
Release | 2013-08-09 |
Genre | Computers |
ISBN | 0262525003 |
An introductory text that teaches students the art of computational problem solving, covering topics that range from simple algorithms to information visualization.
Introduction to Computation
Title | Introduction to Computation PDF eBook |
Author | Donald Sannella |
Publisher | Springer Nature |
Pages | 371 |
Release | 2022-01-19 |
Genre | Computers |
ISBN | 3030769089 |
Computation, itself a form of calculation, incorporates steps that include arithmetical and non-arithmetical (logical) steps following a specific set of rules (an algorithm). This uniquely accessible textbook introduces students using a very distinctive approach, quite rapidly leading them into essential topics with sufficient depth, yet in a highly intuitive manner. From core elements like sets, types, Venn diagrams and logic, to patterns of reasoning, calculus, recursion and expression trees, the book spans the breadth of key concepts and methods that will enable students to readily progress with their studies in Computer Science.
Introduction to the Theory of Computation
Title | Introduction to the Theory of Computation PDF eBook |
Author | Michael Sipser |
Publisher | Cengage Learning |
Pages | 0 |
Release | 2012-06-27 |
Genre | Computers |
ISBN | 9781133187790 |
Now you can clearly present even the most complex computational theory topics to your students with Sipser’s distinct, market-leading INTRODUCTION TO THE THEORY OF COMPUTATION, 3E. The number one choice for today’s computational theory course, this highly anticipated revision retains the unmatched clarity and thorough coverage that make it a leading text for upper-level undergraduate and introductory graduate students. This edition continues author Michael Sipser’s well-known, approachable style with timely revisions, additional exercises, and more memorable examples in key areas. A new first-of-its-kind theoretical treatment of deterministic context-free languages is ideal for a better understanding of parsing and LR(k) grammars. This edition’s refined presentation ensures a trusted accuracy and clarity that make the challenging study of computational theory accessible and intuitive to students while maintaining the subject’s rigor and formalism. Readers gain a solid understanding of the fundamental mathematical properties of computer hardware, software, and applications with a blend of practical and philosophical coverage and mathematical treatments, including advanced theorems and proofs. INTRODUCTION TO THE THEORY OF COMPUTATION, 3E’s comprehensive coverage makes this an ideal ongoing reference tool for those studying theoretical computing. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.
Introduction to Computing
Title | Introduction to Computing PDF eBook |
Author | David Evans |
Publisher | |
Pages | 300 |
Release | 2011-12-07 |
Genre | |
ISBN | 9780983455752 |
Introduction to Computing is a comprehensive text designed for the CS0 (Intro to CS) course at the college level. It may also be used as a primary text for the Advanced Placement Computer Science course at the high school level.
An Introduction to Natural Computation
Title | An Introduction to Natural Computation PDF eBook |
Author | Dana H. Ballard |
Publisher | MIT Press |
Pages | 338 |
Release | 1999-01-22 |
Genre | Psychology |
ISBN | 9780262522588 |
This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It is now clear that the brain is unlikely to be understood without recourse to computational theories. The theme of An Introduction to Natural Computation is that ideas from diverse areas such as neuroscience, information theory, and optimization theory have recently been extended in ways that make them useful for describing the brains programs. This book provides a comprehensive introduction to the computational material that forms the underpinnings of the currently evolving set of brain models. It stresses the broad spectrum of learning models—ranging from neural network learning through reinforcement learning to genetic learning—and situates the various models in their appropriate neural context. To write about models of the brain before the brain is fully understood is a delicate matter. Very detailed models of the neural circuitry risk losing track of the task the brain is trying to solve. At the other extreme, models that represent cognitive constructs can be so abstract that they lose all relationship to neurobiology. An Introduction to Natural Computation takes the middle ground and stresses the computational task while staying near the neurobiology.