Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods
Title | Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods PDF eBook |
Author | Victor N. Kaliakin |
Publisher | CRC Press |
Pages | 698 |
Release | 2018-04-19 |
Genre | Technology & Engineering |
ISBN | 135199090X |
Functions as a self-study guide for engineers and as a textbook for nonengineering students and engineering students, emphasizing generic forms of differential equations, applying approximate solution techniques to examples, and progressing to specific physical problems in modular, self-contained chapters that integrate into the text or can stand alone! This reference/text focuses on classical approximate solution techniques such as the finite difference method, the method of weighted residuals, and variation methods, culminating in an introduction to the finite element method (FEM). Discusses the general notion of approximate solutions and associated errors! With 1500 equations and more than 750 references, drawings, and tables, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods: Describes the approximate solution of ordinary and partial differential equations using the finite difference method Covers the method of weighted residuals, including specific weighting and trial functions Considers variational methods Highlights all aspects associated with the formulation of finite element equations Outlines meshing of the solution domain, nodal specifications, solution of global equations, solution refinement, and assessment of results Containing appendices that present concise overviews of topics and serve as rudimentary tutorials for professionals and students without a background in computational mechanics, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods is a blue-chip reference for civil, mechanical, structural, aerospace, and industrial engineers, and a practical text for upper-level undergraduate and graduate students studying approximate solution techniques and the FEM.
Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods
Title | Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods PDF eBook |
Author | Victor N. Kaliakin |
Publisher | CRC Press |
Pages | 695 |
Release | 2018-04-19 |
Genre | Technology & Engineering |
ISBN | 1482271125 |
Functions as a self-study guide for engineers and as a textbook for nonengineering students and engineering students, emphasizing generic forms of differential equations, applying approximate solution techniques to examples, and progressing to specific physical problems in modular, self-contained chapters that integrate into the text or can stand alone! This reference/text focuses on classical approximate solution techniques such as the finite difference method, the method of weighted residuals, and variation methods, culminating in an introduction to the finite element method (FEM). Discusses the general notion of approximate solutions and associated errors! With 1500 equations and more than 750 references, drawings, and tables, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods: Describes the approximate solution of ordinary and partial differential equations using the finite difference method Covers the method of weighted residuals, including specific weighting and trial functions Considers variational methods Highlights all aspects associated with the formulation of finite element equations Outlines meshing of the solution domain, nodal specifications, solution of global equations, solution refinement, and assessment of results Containing appendices that present concise overviews of topics and serve as rudimentary tutorials for professionals and students without a background in computational mechanics, Introduction to Approximate Solution Techniques, Numerical Modeling, and Finite Element Methods is a blue-chip reference for civil, mechanical, structural, aerospace, and industrial engineers, and a practical text for upper-level undergraduate and graduate students studying approximate solution techniques and the FEM.
Numerical Solution of Partial Differential Equations by the Finite Element Method
Title | Numerical Solution of Partial Differential Equations by the Finite Element Method PDF eBook |
Author | Claes Johnson |
Publisher | Courier Corporation |
Pages | 290 |
Release | 2012-05-23 |
Genre | Mathematics |
ISBN | 0486131599 |
An accessible introduction to the finite element method for solving numeric problems, this volume offers the keys to an important technique in computational mathematics. Suitable for advanced undergraduate and graduate courses, it outlines clear connections with applications and considers numerous examples from a variety of science- and engineering-related specialties.This text encompasses all varieties of the basic linear partial differential equations, including elliptic, parabolic and hyperbolic problems, as well as stationary and time-dependent problems. Additional topics include finite element methods for integral equations, an introduction to nonlinear problems, and considerations of unique developments of finite element techniques related to parabolic problems, including methods for automatic time step control. The relevant mathematics are expressed in non-technical terms whenever possible, in the interests of keeping the treatment accessible to a majority of students.
Numerical Solution of Differential Equations
Title | Numerical Solution of Differential Equations PDF eBook |
Author | Zhilin Li |
Publisher | Cambridge University Press |
Pages | 305 |
Release | 2017-11-30 |
Genre | Mathematics |
ISBN | 1107163226 |
A practical and concise guide to finite difference and finite element methods. Well-tested MATLAB® codes are available online.
The Finite Element Method for Elliptic Problems
Title | The Finite Element Method for Elliptic Problems PDF eBook |
Author | P.G. Ciarlet |
Publisher | Elsevier |
Pages | 551 |
Release | 1978-01-01 |
Genre | Mathematics |
ISBN | 0080875254 |
The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.
Automated Solution of Differential Equations by the Finite Element Method
Title | Automated Solution of Differential Equations by the Finite Element Method PDF eBook |
Author | Anders Logg |
Publisher | Springer Science & Business Media |
Pages | 723 |
Release | 2012-02-24 |
Genre | Computers |
ISBN | 3642230997 |
This book is a tutorial written by researchers and developers behind the FEniCS Project and explores an advanced, expressive approach to the development of mathematical software. The presentation spans mathematical background, software design and the use of FEniCS in applications. Theoretical aspects are complemented with computer code which is available as free/open source software. The book begins with a special introductory tutorial for beginners. Following are chapters in Part I addressing fundamental aspects of the approach to automating the creation of finite element solvers. Chapters in Part II address the design and implementation of the FEnicS software. Chapters in Part III present the application of FEniCS to a wide range of applications, including fluid flow, solid mechanics, electromagnetics and geophysics.
The Finite Element Method for Solid and Structural Mechanics
Title | The Finite Element Method for Solid and Structural Mechanics PDF eBook |
Author | O. C. Zienkiewicz |
Publisher | Elsevier |
Pages | 653 |
Release | 2005-08-09 |
Genre | Technology & Engineering |
ISBN | 0080455581 |
This is the key text and reference for engineers, researchers and senior students dealing with the analysis and modelling of structures – from large civil engineering projects such as dams, to aircraft structures, through to small engineered components. Covering small and large deformation behaviour of solids and structures, it is an essential book for engineers and mathematicians. The new edition is a complete solids and structures text and reference in its own right and forms part of the world-renowned Finite Element Method series by Zienkiewicz and Taylor. New material in this edition includes separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage of plasticity (isotropic and anisotropic); node-to-surface and 'mortar' method treatments; problems involving solids and rigid and pseudo-rigid bodies; and multi-scale modelling. - Dedicated coverage of solid and structural mechanics by world-renowned authors, Zienkiewicz and Taylor - New material including separate coverage of solid continua and structural theories of rods, plates and shells; extended coverage for small and finite deformation; elastic and inelastic material constitution; contact modelling; problems involving solids, rigid and discrete elements; and multi-scale modelling