An Introduction to Measure and Probability

An Introduction to Measure and Probability
Title An Introduction to Measure and Probability PDF eBook
Author J.C. Taylor
Publisher Springer Science & Business Media
Pages 316
Release 2012-12-06
Genre Mathematics
ISBN 1461206596

Download An Introduction to Measure and Probability Book in PDF, Epub and Kindle

Assuming only calculus and linear algebra, Professor Taylor introduces readers to measure theory and probability, discrete martingales, and weak convergence. This is a technically complete, self-contained and rigorous approach that helps the reader to develop basic skills in analysis and probability. Students of pure mathematics and statistics can thus expect to acquire a sound introduction to basic measure theory and probability, while readers with a background in finance, business, or engineering will gain a technical understanding of discrete martingales in the equivalent of one semester. J. C. Taylor is the author of numerous articles on potential theory, both probabilistic and analytic, and is particularly interested in the potential theory of symmetric spaces.

Introduction to Probability and Measure

Introduction to Probability and Measure
Title Introduction to Probability and Measure PDF eBook
Author K.R. Parthasarathy
Publisher Springer
Pages 352
Release 2005-05-15
Genre Mathematics
ISBN 9386279274

Download Introduction to Probability and Measure Book in PDF, Epub and Kindle

According to a remark attributed to Mark Kac 'Probability Theory is a measure theory with a soul'. This book with its choice of proofs, remarks, examples and exercises has been prepared taking both these aesthetic and practical aspects into account.

Introdction to Measure and Probability

Introdction to Measure and Probability
Title Introdction to Measure and Probability PDF eBook
Author J. F. C. Kingman
Publisher Cambridge University Press
Pages 415
Release 2008-11-20
Genre Mathematics
ISBN 1316582159

Download Introdction to Measure and Probability Book in PDF, Epub and Kindle

The authors believe that a proper treatment of probability theory requires an adequate background in the theory of finite measures in general spaces. The first part of their book sets out this material in a form that not only provides an introduction for intending specialists in measure theory but also meets the needs of students of probability. The theory of measure and integration is presented for general spaces, with Lebesgue measure and the Lebesgue integral considered as important examples whose special properties are obtained. The introduction to functional analysis which follows covers the material (such as the various notions of convergence) which is relevant to probability theory and also the basic theory of L2-spaces, important in modern physics. The second part of the book is an account of the fundamental theoretical ideas which underlie the applications of probability in statistics and elsewhere, developed from the results obtained in the first part. A large number of examples is included; these form an essential part of the development.

Probability and Measure

Probability and Measure
Title Probability and Measure PDF eBook
Author Patrick Billingsley
Publisher John Wiley & Sons
Pages 612
Release 2017
Genre
ISBN 9788126517718

Download Probability and Measure Book in PDF, Epub and Kindle

Now in its new third edition, Probability and Measure offers advanced students, scientists, and engineers an integrated introduction to measure theory and probability. Retaining the unique approach of the previous editions, this text interweaves material on probability and measure, so that probability problems generate an interest in measure theory and measure theory is then developed and applied to probability. Probability and Measure provides thorough coverage of probability, measure, integration, random variables and expected values, convergence of distributions, derivatives and conditional probability, and stochastic processes. The Third Edition features an improved treatment of Brownian motion and the replacement of queuing theory with ergodic theory.· Probability· Measure· Integration· Random Variables and Expected Values· Convergence of Distributions· Derivatives and Conditional Probability· Stochastic Processes

An Introduction to Measure-theoretic Probability

An Introduction to Measure-theoretic Probability
Title An Introduction to Measure-theoretic Probability PDF eBook
Author George G. Roussas
Publisher Gulf Professional Publishing
Pages 463
Release 2005
Genre Computers
ISBN 0125990227

Download An Introduction to Measure-theoretic Probability Book in PDF, Epub and Kindle

This book provides in a concise, yet detailed way, the bulk of the probabilistic tools that a student working toward an advanced degree in statistics, probability and other related areas, should be equipped with. The approach is classical, avoiding the use of mathematical tools not necessary for carrying out the discussions. All proofs are presented in full detail. * Excellent exposition marked by a clear, coherent and logical devleopment of the subject * Easy to understand, detailed discussion of material * Complete proofs

An Introduction to Measure Theory

An Introduction to Measure Theory
Title An Introduction to Measure Theory PDF eBook
Author Terence Tao
Publisher American Mathematical Soc.
Pages 206
Release 2021-09-03
Genre Education
ISBN 1470466406

Download An Introduction to Measure Theory Book in PDF, Epub and Kindle

This is a graduate text introducing the fundamentals of measure theory and integration theory, which is the foundation of modern real analysis. The text focuses first on the concrete setting of Lebesgue measure and the Lebesgue integral (which in turn is motivated by the more classical concepts of Jordan measure and the Riemann integral), before moving on to abstract measure and integration theory, including the standard convergence theorems, Fubini's theorem, and the Carathéodory extension theorem. Classical differentiation theorems, such as the Lebesgue and Rademacher differentiation theorems, are also covered, as are connections with probability theory. The material is intended to cover a quarter or semester's worth of material for a first graduate course in real analysis. There is an emphasis in the text on tying together the abstract and the concrete sides of the subject, using the latter to illustrate and motivate the former. The central role of key principles (such as Littlewood's three principles) as providing guiding intuition to the subject is also emphasized. There are a large number of exercises throughout that develop key aspects of the theory, and are thus an integral component of the text. As a supplementary section, a discussion of general problem-solving strategies in analysis is also given. The last three sections discuss optional topics related to the main matter of the book.

A User's Guide to Measure Theoretic Probability

A User's Guide to Measure Theoretic Probability
Title A User's Guide to Measure Theoretic Probability PDF eBook
Author David Pollard
Publisher Cambridge University Press
Pages 372
Release 2002
Genre Mathematics
ISBN 9780521002899

Download A User's Guide to Measure Theoretic Probability Book in PDF, Epub and Kindle

This book grew from a one-semester course offered for many years to a mixed audience of graduate and undergraduate students who have not had the luxury of taking a course in measure theory. The core of the book covers the basic topics of independence, conditioning, martingales, convergence in distribution, and Fourier transforms. In addition there are numerous sections treating topics traditionally thought of as more advanced, such as coupling and the KMT strong approximation, option pricing via the equivalent martingale measure, and the isoperimetric inequality for Gaussian processes. The book is not just a presentation of mathematical theory, but is also a discussion of why that theory takes its current form. It will be a secure starting point for anyone who needs to invoke rigorous probabilistic arguments and understand what they mean.