Intra-oceanic Subduction Systems
Title | Intra-oceanic Subduction Systems PDF eBook |
Author | Robert D. Larter |
Publisher | Geological Society of London |
Pages | 362 |
Release | 2003 |
Genre | Science |
ISBN | 9781862391475 |
Recycling of oceanic plate back into the Earth's interior at subduction zones is one of the key processes in Earth evolution. Volcanic arcs, which form above subduction zones, are the most visible manifestations of plate tectonics, the convection mechanism by which the Earth loses excess heat. They are probably also the main location where new continental crust is formed, the so-called 'subduction factory' About 400f modern subduction zones on Earth are intra-oceanic. These subduction systems are generally simpler than those at continental margins as they commonly have a shorter history of subduction and their magmas are not contaminated by ancient sialic crust. They are therefore the optimum locations for studies of mantle processes and magmatic addition to the crust in subduction zones.
Arc-Continent Collision
Title | Arc-Continent Collision PDF eBook |
Author | Dennis Brown |
Publisher | Springer Science & Business Media |
Pages | 492 |
Release | 2011-06-29 |
Genre | Science |
ISBN | 3540885587 |
Arc-continent collision has been one of the important tectonic processes in the formation of mountain belts throughout geological time, and it continues to be so today along tectonically active plate boundaries such as those in the SW Pacific or the Caribbean. Arc-continent collision is thought to have been one of the most important process involved in the growth of the continental crust over geological time, and may also play an important role in its recycling back into the mantle via subduction. Understanding the geological processes that take place during arc-continent collision is therefore of importance for our understanding of how collisional orogens evolve and how the continental crust grows or is destroyed. Furthermore, zones of arc-continent collision are producers of much of the worlds primary economic wealth in the form of minerals, so understanding the processes that take place during these tectonic events is of importance in modeling how this mineral wealth is formed and preserved. This book brings together seventeen papers that are dedicated to the investigation of the tectonic processes that take place during arc-continent collision. It is divided into four sections that deal firstly with the main players involved in any arc-continent collision; the continental margin, the subduction zone, and finally the volcanic arc and its mineral deposits. The second section presents eight examples of arc-continent collisions that range from being currently active through to Palaeoproterozoic in age. The third section contains two papers, one that deals with the obduction of large-slab ophiolites and a second that presents a wide range of physical models of arc-continent collision. The fourth section brings everything that comes before together into a discussion of the processes of arc-continent collision.
Subduction Zone Magmatism
Title | Subduction Zone Magmatism PDF eBook |
Author | Yashiyuki Tatsumi |
Publisher | Wiley |
Pages | 224 |
Release | 1995-06-15 |
Genre | Science |
ISBN | 9780865423619 |
Subduction zones are major sites of volcanism on the Earth. As one crustal plate sinks or is pushed beneath another, hot magma is produced and the resultant magma flux is fundamental to both the thermal evolution and chemical differentiation of the mantle and the Earth itself. To understand these evolutionary processes, we need to understand the physical and chemical consequences of all aspects of the subduction process. In this book, the authors present a simple, current and comprehensive model that explains the dominant geological processes at work in subduction zones. Structuring the book around the model, the authors describe the physical characteristics and geochemical dynamics of subduction zones, arc magma generation, and the dynamics and flow in the mantle. Students and researchers alike will find this book of immense value in understanding this most complex of subjects.
Tectonics of Sedimentary Basins
Title | Tectonics of Sedimentary Basins PDF eBook |
Author | Cathy Busby |
Publisher | John Wiley & Sons |
Pages | 1034 |
Release | 2011-12-07 |
Genre | Science |
ISBN | 1444347144 |
Investigating the complex interplay between tectonics and sedimentation is a key endeavor in modern earth science. Many of the world's leading researchers in this field have been brought together in this volume to provide concise overviews of the current state of the subject. The plate tectonic revolution of the 1960's provided the framework for detailed models on the structure of orogens and basins, summarized in a 1995 textbook edited by Busby and Ingersoll. Tectonics of Sedimentary Basins: Recent Advances focuses on key topics or areas where the greatest strides forward have been made, while also providing on-line access to the comprehensive 1995 book. Breakthroughs in new techniques are described in Section 1, including detrital zircon geochronology, cosmogenic nuclide dating, magnetostratigraphy, 3-D seismic, and basin modelling. Section 2 presents the new models for rift, post-rift, transtensional and strike slip basin settings. Section 3 addresses the latest ideas in convergent margin tectonics, including the sedimentary record of subduction intiation and subduction, flat-slab subduction, and arc-continent collision; it then moves inboard to forearc basins and intra-arc basins, and ends with a series of papers formed under compessional strain regimes, as well as post-orogenic intramontane basins. Section 4 examines the origin of plate interior basins, and the sedimentary record of supercontinent formation. This book is required reading for any advanced student or professional interested in sedimentology, plate tectonics, or petroleum geoscience. Additional resources for this book can be found at: www.wiley.com/go/busby/sedimentarybasins.
Formation of Active Ocean Margins
Title | Formation of Active Ocean Margins PDF eBook |
Author | Noriyuki Nasu |
Publisher | Springer |
Pages | 958 |
Release | 1986-09-30 |
Genre | Science |
ISBN |
The ocean floor spreading theory was proposed during 1961 and 62 by Robert Dietz and Harry Hess. This concept was a revolutionary one, and renewed the scientists thoughts on the dynamics of the ocean bottom. Then, for example, the coincidence of the Wadati-Benioff Zone with the subduction zone proposed by new concept was well understood. Further development of the ocean floor spreading theory was the proposal of new concept "plate tectonics" proposed by Xavier LePichon and by a few others during 1967 and 68. This new idea could solve the various conflicts involved in the "ocean floor spreading theory". Therefore, today, scientists understand that the plate tectonics theory was born by the ocean floor spreading theory, which is able to cover the weak points of the latter. D/V Glomar Challenger started her Leg Ion 20 July, 1968 from Orange, Texas to implement the Deep Sea Drilling Project. The timing almost coincided with the proposal period of the plate tectonics. After carrying out a few legs of the drilling operations, the results obtained by D I V Glomar Challenger well proved the rightness of the newly proposed theories of the ocean floor spreading and the plate tectonics. For us, the successful processes started by the ocean floor spreading theory, improved by the concept of plate tectonics and proved by the DSDP results have been a golden monument in the field of earth sciences probably for several centuries.
The South China Sea
Title | The South China Sea PDF eBook |
Author | Pinxian Wang |
Publisher | Springer Science & Business Media |
Pages | 506 |
Release | 2009-05-27 |
Genre | Science |
ISBN | 140209745X |
Pinxian Wang and Qianyu Li The South China Sea (SCS) (Fig. 1. 1) offers a special attraction for Earth scientists world-wide because of its location and its well-preserved hemipelagic sediments. As the largest one of the marginal seas separating Asia from the Paci?c, the largest continent from the largest ocean, the SCS functions as a focal point in land-sea int- actions of the Earth system. Climatically, the SCS is located between the Western Paci?c Warm Pool, the centre of global heating at the sea level, and the Tibetan Plateau, the centre of heating at an altitude of 5,000m. Geomorphologically, the SCS lies to the east of the highest peak on earth, Zhumulangma or Everest in the Himalayas (8,848m elevation) and to the west of the deepest trench in the ocean, Philippine Trench (10,497m water depth) (Wang P. 2004). Biogeographically, the SCS belongs to the so-called “East Indies Triangle” where modern marine and terrestrial biodiversity reaches a global maximum (Briggs 1999). Among the major marginal sea basins from the west Paci?c, the SCS presents some of the best conditions for accumulating complete paleoclimatic records in its hemipelagic deposits. These records are favorable for high-resolution pa- oceanographic studies because of high sedimentation rates and good carbonate preservation. It may not be merely a coincidence that two cores from the southern 14 SCS were among the ?rst several cores in the world ocean used by AMS C dating for high-resolution stratigraphy (Andree et al. 1986; Broecker et al. 1988).
Terrane Processes at the Margins of Gondwana
Title | Terrane Processes at the Margins of Gondwana PDF eBook |
Author | Alan Vaughan |
Publisher | Geological Society of London |
Pages | 462 |
Release | 2005 |
Genre | Science |
ISBN | 9781862391796 |
The Australide orogen, the southern hemisphere Neoproterozoic to Mesozoic terrane accretionary orogen that forms the palaeo-Pacific margin of Gondwana, is one of the largest and longest-lived orogens on Earth. This book brings together a series of reviews and multidisciplinary research papers that comprehensively cover the Australides from the Tasman orogen of eastern Australia to the Neoproterozoic and Palaeozoic orogens of South America, taking in New Zealand and Antarctica along the way. It deals with the evolution of the southern Gondwana margin, as it grew during a series of terrane accretion episodes from the late Proterozoic through to final fragmentation in mid-Cretaceous times. Global perspectives are given by comparison with the Palaeozoic northern Gondwana margin and documentation of world-wide terrane accretion episodes in the Late Triassic-Early Jurassic and mid-Cretaceous. The Tasmanides of eastern Australia, and the terrane histories of New Zealand and southern South America are given comprehensive up-to-date reviews.