Interval / Probabilistic Uncertainty and Non-classical Logics
Title | Interval / Probabilistic Uncertainty and Non-classical Logics PDF eBook |
Author | Van-Nam Huynh |
Publisher | Springer Science & Business Media |
Pages | 381 |
Release | 2008-01-11 |
Genre | Mathematics |
ISBN | 3540776648 |
This book contains the proceedings of the first International Workshop on Interval/Probabilistic Uncertainty and Non Classical Logics, Ishikawa, Japan, March 25-28, 2008. The workshop brought together researchers working on interval and probabilistic uncertainty and on non-classical logics. It is hoped this workshop will lead to a boost in the much-needed collaboration between the uncertainty analysis and non-classical logic communities, and thus, to better processing of uncertainty.
The Geometry of Uncertainty
Title | The Geometry of Uncertainty PDF eBook |
Author | Fabio Cuzzolin |
Publisher | Springer Nature |
Pages | 850 |
Release | 2020-12-17 |
Genre | Computers |
ISBN | 3030631532 |
The principal aim of this book is to introduce to the widest possible audience an original view of belief calculus and uncertainty theory. In this geometric approach to uncertainty, uncertainty measures can be seen as points of a suitably complex geometric space, and manipulated in that space, for example, combined or conditioned. In the chapters in Part I, Theories of Uncertainty, the author offers an extensive recapitulation of the state of the art in the mathematics of uncertainty. This part of the book contains the most comprehensive summary to date of the whole of belief theory, with Chap. 4 outlining for the first time, and in a logical order, all the steps of the reasoning chain associated with modelling uncertainty using belief functions, in an attempt to provide a self-contained manual for the working scientist. In addition, the book proposes in Chap. 5 what is possibly the most detailed compendium available of all theories of uncertainty. Part II, The Geometry of Uncertainty, is the core of this book, as it introduces the author’s own geometric approach to uncertainty theory, starting with the geometry of belief functions: Chap. 7 studies the geometry of the space of belief functions, or belief space, both in terms of a simplex and in terms of its recursive bundle structure; Chap. 8 extends the analysis to Dempster’s rule of combination, introducing the notion of a conditional subspace and outlining a simple geometric construction for Dempster’s sum; Chap. 9 delves into the combinatorial properties of plausibility and commonality functions, as equivalent representations of the evidence carried by a belief function; then Chap. 10 starts extending the applicability of the geometric approach to other uncertainty measures, focusing in particular on possibility measures (consonant belief functions) and the related notion of a consistent belief function. The chapters in Part III, Geometric Interplays, are concerned with the interplay of uncertainty measures of different kinds, and the geometry of their relationship, with a particular focus on the approximation problem. Part IV, Geometric Reasoning, examines the application of the geometric approach to the various elements of the reasoning chain illustrated in Chap. 4, in particular conditioning and decision making. Part V concludes the book by outlining a future, complete statistical theory of random sets, future extensions of the geometric approach, and identifying high-impact applications to climate change, machine learning and artificial intelligence. The book is suitable for researchers in artificial intelligence, statistics, and applied science engaged with theories of uncertainty. The book is supported with the most comprehensive bibliography on belief and uncertainty theory.
Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments
Title | Mechanical Engineering in Uncertainties From Classical Approaches to Some Recent Developments PDF eBook |
Author | |
Publisher | John Wiley & Sons |
Pages | 354 |
Release | 2021-05-11 |
Genre | Science |
ISBN | 1789450101 |
Considering the uncertainties in mechanical engineering in order to improve the performance of future products or systems is becoming a competitive advantage, sometimes even a necessity, when seeking to guarantee an increasingly high safety requirement. Mechanical Engineering in Uncertainties deals with modeling, quantification and propagation of uncertainties. It also examines how to take into account uncertainties through reliability analyses and optimization under uncertainty. The spectrum of the methods presented ranges from classical approaches to more recent developments and advanced methods. The methodologies are illustrated by concrete examples in various fields of mechanics (civil engineering, mechanical engineering and fluid mechanics). This book is intended for both (young) researchers and engineers interested in the treatment of uncertainties in mechanical engineering.
Knowledge Processing with Interval and Soft Computing
Title | Knowledge Processing with Interval and Soft Computing PDF eBook |
Author | Chenyi Hu |
Publisher | Springer Science & Business Media |
Pages | 241 |
Release | 2009-04-03 |
Genre | Computers |
ISBN | 1848003269 |
Interval computing combined with fuzzy logic has become an emerging tool in studying artificial intelligence and knowledge processing (AIKP) applications since it models uncertainties frequently raised in the field. This book provides introductions for both interval and fuzzy computing in a very accessible style. Application algorithms covered in this book include quantitative and qualitative data mining with interval valued datasets, decision making systems with interval valued parameters, interval valued Nash games and interval weighted graphs. Successful applications in studying finance and economics, etc are also included. This book can serve as a handbook or a text for readers interested in applying interval and soft computing for AIKP.
Probabilistic Logics and Probabilistic Networks
Title | Probabilistic Logics and Probabilistic Networks PDF eBook |
Author | Rolf Haenni |
Publisher | Springer Science & Business Media |
Pages | 154 |
Release | 2010-11-19 |
Genre | Science |
ISBN | 9400700083 |
While probabilistic logics in principle might be applied to solve a range of problems, in practice they are rarely applied - perhaps because they seem disparate, complicated, and computationally intractable. This programmatic book argues that several approaches to probabilistic logic fit into a simple unifying framework in which logically complex evidence is used to associate probability intervals or probabilities with sentences. Specifically, Part I shows that there is a natural way to present a question posed in probabilistic logic, and that various inferential procedures provide semantics for that question, while Part II shows that there is the potential to develop computationally feasible methods to mesh with this framework. The book is intended for researchers in philosophy, logic, computer science and statistics. A familiarity with mathematical concepts and notation is presumed, but no advanced knowledge of logic or probability theory is required.
Information Processing and Management of Uncertainty in Knowledge-Based Systems
Title | Information Processing and Management of Uncertainty in Knowledge-Based Systems PDF eBook |
Author | Davide Ciucci |
Publisher | Springer Nature |
Pages | 825 |
Release | 2022-07-04 |
Genre | Computers |
ISBN | 3031089715 |
This two-volume set (CCIS 1601-1602) constitutes the proceedings of the 19th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2021, held in Milan, Italy, in July 2022. The 124 papers were carefully reviewed and selected from 188 submissions. The papers are organized in topical sections as follows: aggregation theory beyond the unit interval; formal concept analysis and uncertainty; fuzzy implication functions; fuzzy mathematical analysis and its applications; generalized sets and operators; information fusion techniques based on aggregation functions, pre-aggregation functions, and their generalizations; interval uncertainty; knowledge acquisition, representation and reasoning; logical structures of opposition and logical syllogisms; mathematical fuzzy logics; theoretical and applied aspects of imprecise probabilities; data science and machine learning; decision making modeling and applications; e-health; fuzzy methods in data mining and knowledge discovery; soft computing and artificia intelligence techniques in image processing; soft methods in statistics and data analysis; uncertainty, heterogeneity, reliability and explainability in AI; weak and cautious supervised learning.
Information Processing and Management of Uncertainty in Knowledge-Based Systems
Title | Information Processing and Management of Uncertainty in Knowledge-Based Systems PDF eBook |
Author | Marie-Jeanne Lesot |
Publisher | Springer Nature |
Pages | 839 |
Release | 2020-06-05 |
Genre | Computers |
ISBN | 3030501531 |
This three volume set (CCIS 1237-1239) constitutes the proceedings of the 18th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems, IPMU 2020, in June 2020. The conference was scheduled to take place in Lisbon, Portugal, at University of Lisbon, but due to COVID-19 pandemic it was held virtually. The 173 papers were carefully reviewed and selected from 213 submissions. The papers are organized in topical sections: homage to Enrique Ruspini; invited talks; foundations and mathematics; decision making, preferences and votes; optimization and uncertainty; games; real world applications; knowledge processing and creation; machine learning I; machine learning II; XAI; image processing; temporal data processing; text analysis and processing; fuzzy interval analysis; theoretical and applied aspects of imprecise probabilities; similarities in artificial intelligence; belief function theory and its applications; aggregation: theory and practice; aggregation: pre-aggregation functions and other generalizations of monotonicity; aggregation: aggregation of different data structures; fuzzy methods in data mining and knowledge discovery; computational intelligence for logistics and transportation problems; fuzzy implication functions; soft methods in statistics and data analysis; image understanding and explainable AI; fuzzy and generalized quantifier theory; mathematical methods towards dealing with uncertainty in applied sciences; statistical image processing and analysis, with applications in neuroimaging; interval uncertainty; discrete models and computational intelligence; current techniques to model, process and describe time series; mathematical fuzzy logic and graded reasoning models; formal concept analysis, rough sets, general operators and related topics; computational intelligence methods in information modelling, representation and processing.