The Moduli Space of Curves

The Moduli Space of Curves
Title The Moduli Space of Curves PDF eBook
Author Robert H. Dijkgraaf
Publisher Springer Science & Business Media
Pages 570
Release 2012-12-06
Genre Mathematics
ISBN 1461242649

Download The Moduli Space of Curves Book in PDF, Epub and Kindle

The moduli space Mg of curves of fixed genus g – that is, the algebraic variety that parametrizes all curves of genus g – is one of the most intriguing objects of study in algebraic geometry these days. Its appeal results not only from its beautiful mathematical structure but also from recent developments in theoretical physics, in particular in conformal field theory.

Intersection Theory on the Moduli Space of Curves

Intersection Theory on the Moduli Space of Curves
Title Intersection Theory on the Moduli Space of Curves PDF eBook
Author Bradley Safnuk
Publisher
Pages 324
Release 2006
Genre
ISBN

Download Intersection Theory on the Moduli Space of Curves Book in PDF, Epub and Kindle

3264 and All That

3264 and All That
Title 3264 and All That PDF eBook
Author David Eisenbud
Publisher Cambridge University Press
Pages 633
Release 2016-04-14
Genre Mathematics
ISBN 1107017084

Download 3264 and All That Book in PDF, Epub and Kindle

3264, the mathematical solution to a question concerning geometric figures.

An Invitation to Quantum Cohomology

An Invitation to Quantum Cohomology
Title An Invitation to Quantum Cohomology PDF eBook
Author Joachim Kock
Publisher Springer Science & Business Media
Pages 162
Release 2007-12-27
Genre Mathematics
ISBN 0817644954

Download An Invitation to Quantum Cohomology Book in PDF, Epub and Kindle

Elementary introduction to stable maps and quantum cohomology presents the problem of counting rational plane curves Viewpoint is mostly that of enumerative geometry Emphasis is on examples, heuristic discussions, and simple applications to best convey the intuition behind the subject Ideal for self-study, for a mini-course in quantum cohomology, or as a special topics text in a standard course in intersection theory

Enumerative Invariants in Algebraic Geometry and String Theory

Enumerative Invariants in Algebraic Geometry and String Theory
Title Enumerative Invariants in Algebraic Geometry and String Theory PDF eBook
Author Marcos Marino
Publisher Springer
Pages 219
Release 2008-08-15
Genre Mathematics
ISBN 3540798145

Download Enumerative Invariants in Algebraic Geometry and String Theory Book in PDF, Epub and Kindle

Starting in the middle of the 80s, there has been a growing and fruitful interaction between algebraic geometry and certain areas of theoretical high-energy physics, especially the various versions of string theory. Physical heuristics have provided inspiration for new mathematical definitions (such as that of Gromov-Witten invariants) leading in turn to the solution of problems in enumerative geometry. Conversely, the availability of mathematically rigorous definitions and theorems has benefited the physics research by providing the required evidence in fields where experimental testing seems problematic. The aim of this volume, a result of the CIME Summer School held in Cetraro, Italy, in 2005, is to cover part of the most recent and interesting findings in this subject.

Moduli of Curves

Moduli of Curves
Title Moduli of Curves PDF eBook
Author Joe Harris
Publisher Springer Science & Business Media
Pages 381
Release 2006-04-06
Genre Mathematics
ISBN 0387227377

Download Moduli of Curves Book in PDF, Epub and Kindle

A guide to a rich and fascinating subject: algebraic curves and how they vary in families. Providing a broad but compact overview of the field, this book is accessible to readers with a modest background in algebraic geometry. It develops many techniques, including Hilbert schemes, deformation theory, stable reduction, intersection theory, and geometric invariant theory, with the focus on examples and applications arising in the study of moduli of curves. From such foundations, the book goes on to show how moduli spaces of curves are constructed, illustrates typical applications with the proofs of the Brill-Noether and Gieseker-Petri theorems via limit linear series, and surveys the most important results about their geometry ranging from irreducibility and complete subvarieties to ample divisors and Kodaira dimension. With over 180 exercises and 70 figures, the book also provides a concise introduction to the main results and open problems about important topics which are not covered in detail.

Moduli Spaces of Riemann Surfaces

Moduli Spaces of Riemann Surfaces
Title Moduli Spaces of Riemann Surfaces PDF eBook
Author Benson Farb
Publisher American Mathematical Soc.
Pages 371
Release 2013-08-16
Genre Mathematics
ISBN 0821898876

Download Moduli Spaces of Riemann Surfaces Book in PDF, Epub and Kindle

Mapping class groups and moduli spaces of Riemann surfaces were the topics of the Graduate Summer School at the 2011 IAS/Park City Mathematics Institute. This book presents the nine different lecture series comprising the summer school, covering a selection of topics of current interest. The introductory courses treat mapping class groups and Teichmüller theory. The more advanced courses cover intersection theory on moduli spaces, the dynamics of polygonal billiards and moduli spaces, the stable cohomology of mapping class groups, the structure of Torelli groups, and arithmetic mapping class groups. The courses consist of a set of intensive short lectures offered by leaders in the field, designed to introduce students to exciting, current research in mathematics. These lectures do not duplicate standard courses available elsewhere. The book should be a valuable resource for graduate students and researchers interested in the topology, geometry and dynamics of moduli spaces of Riemann surfaces and related topics. Titles in this series are co-published with the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.