Infinite Dimensional Groups and Manifolds
Title | Infinite Dimensional Groups and Manifolds PDF eBook |
Author | Tilmann Wurzbacher |
Publisher | Walter de Gruyter |
Pages | 259 |
Release | 2008-08-22 |
Genre | Mathematics |
ISBN | 3110200015 |
The volume is a collection of refereed research papers on infinite dimensional groups and manifolds in mathematics and quantum physics. Topics covered are: new classes of Lie groups of mappings, the Burgers equation, the Chern--Weil construction in infinite dimensions, the hamiltonian approach to quantum field theory, and different aspects of large N limits ranging from approximation methods in quantum mechanics to modular forms and string/gauge theory duality. Directed at research mathematicians and theoretical physicists as well as graduate students, the volume gives an overview of important themes of research at the forefront of mathematics and theoretical physics.
Differential and Riemannian Manifolds
Title | Differential and Riemannian Manifolds PDF eBook |
Author | Serge Lang |
Publisher | Springer Science & Business Media |
Pages | 376 |
Release | 2012-12-06 |
Genre | Mathematics |
ISBN | 1461241820 |
This is the third version of a book on differential manifolds. The first version appeared in 1962, and was written at the very beginning of a period of great expansion of the subject. At the time, I found no satisfactory book for the foundations of the subject, for multiple reasons. I expanded the book in 1971, and I expand it still further today. Specifically, I have added three chapters on Riemannian and pseudo Riemannian geometry, that is, covariant derivatives, curvature, and some applications up to the Hopf-Rinow and Hadamard-Cartan theorems, as well as some calculus of variations and applications to volume forms. I have rewritten the sections on sprays, and I have given more examples of the use of Stokes' theorem. I have also given many more references to the literature, all of this to broaden the perspective of the book, which I hope can be used among things for a general course leading into many directions. The present book still meets the old needs, but fulfills new ones. At the most basic level, the book gives an introduction to the basic concepts which are used in differential topology, differential geometry, and differential equations. In differential topology, one studies for instance homotopy classes of maps and the possibility of finding suitable differentiable maps in them (immersions, embeddings, isomorphisms, etc.).
3264 and All That
Title | 3264 and All That PDF eBook |
Author | David Eisenbud |
Publisher | Cambridge University Press |
Pages | 633 |
Release | 2016-04-14 |
Genre | Mathematics |
ISBN | 1107017084 |
3264, the mathematical solution to a question concerning geometric figures.
The Convenient Setting of Global Analysis
Title | The Convenient Setting of Global Analysis PDF eBook |
Author | Andreas Kriegl |
Publisher | American Mathematical Society |
Pages | 631 |
Release | 2024-08-15 |
Genre | Mathematics |
ISBN | 1470478935 |
This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fr‚chet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.
Lectures on Contact 3-Manifolds, Holomorphic Curves and Intersection Theory
Title | Lectures on Contact 3-Manifolds, Holomorphic Curves and Intersection Theory PDF eBook |
Author | Chris Wendl |
Publisher | Cambridge University Press |
Pages | 198 |
Release | 2020-03-26 |
Genre | Mathematics |
ISBN | 1108759580 |
Intersection theory has played a prominent role in the study of closed symplectic 4-manifolds since Gromov's famous 1985 paper on pseudoholomorphic curves, leading to myriad beautiful rigidity results that are either inaccessible or not true in higher dimensions. Siefring's recent extension of the theory to punctured holomorphic curves allowed similarly important results for contact 3-manifolds and their symplectic fillings. Based on a series of lectures for graduate students in topology, this book begins with an overview of the closed case, and then proceeds to explain the essentials of Siefring's intersection theory and how to use it, and gives some sample applications in low-dimensional symplectic and contact topology. The appendices provide valuable information for researchers, including a concise reference guide on Siefring's theory and a self-contained proof of a weak version of the Micallef–White theorem.
Nonlinear Functional Analysis
Title | Nonlinear Functional Analysis PDF eBook |
Author | Felix E. Browder |
Publisher | American Mathematical Soc. |
Pages | 304 |
Release | 1970 |
Genre | Mathematics |
ISBN | 0821802437 |
Intersection Theory on the Moduli Space of Curves
Title | Intersection Theory on the Moduli Space of Curves PDF eBook |
Author | Bradley Safnuk |
Publisher | |
Pages | 324 |
Release | 2006 |
Genre | |
ISBN |