Engineering Applications of Neural Networks
Title | Engineering Applications of Neural Networks PDF eBook |
Author | Giacomo Boracchi |
Publisher | Springer |
Pages | 739 |
Release | 2017-07-30 |
Genre | Computers |
ISBN | 3319651722 |
This book constitutes the refereed proceedings of the 18th International Conference on Engineering Applications of Neural Networks, EANN 2017, held in Athens, Greece, in August 2017. The 40 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 83 submissions. The papers cover the topics of deep learning, convolutional neural networks, image processing, pattern recognition, recommendation systems, machine learning, and applications of Artificial Neural Networks (ANN) applications in engineering, 5G telecommunication networks, and audio signal processing. The volume also includes papers presented at the 6th Mining Humanistic Data Workshop (MHDW 2017) and the 2nd Workshop on 5G-Putting Intelligence to the Network Edge (5G-PINE).
Engineering Applications of Neural Networks
Title | Engineering Applications of Neural Networks PDF eBook |
Author | John Macintyre |
Publisher | Springer |
Pages | 554 |
Release | 2019-05-14 |
Genre | Computers |
ISBN | 3030202577 |
This book constitutes the refereed proceedings of the 19th International Conference on Engineering Applications of Neural Networks, EANN 2019, held in Xersonisos, Crete, Greece, in May 2019. The 35 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 72 submissions. The papers are organized in topical sections on AI in energy management - industrial applications; biomedical - bioinformatics modeling; classification - learning; deep learning; deep learning - convolutional ANN; fuzzy - vulnerability - navigation modeling; machine learning modeling - optimization; ML - DL financial modeling; security - anomaly detection; 1st PEINT workshop.
Engineering Applications of Neural Networks
Title | Engineering Applications of Neural Networks PDF eBook |
Author | Dominic Palmer-Brown |
Publisher | Springer Science & Business Media |
Pages | 508 |
Release | 2009-08-19 |
Genre | Computers |
ISBN | 3642039693 |
A cursory glance at the table of contents of EANN 2009 reveals the am- ing range of neural network and related applications. A random but revealing sample includes: reducing urban concentration, entropy topography in epil- tic electroencephalography, phytoplanktonic species recognition, revealing the structure of childhood abdominal pain data, robot control, discriminating angry and happy facial expressions, ?ood forecasting, and assessing credit worthiness. The diverse nature of applications demonstrates the vitality of neural comp- ing and related soft computing approaches, and their relevance to many key contemporary technological challenges. It also illustrates the value of EANN in bringing together a broad spectrum of delegates from across the world to learn from each other’s related methods. Variations and extensions of many methods are well represented in the proceedings, ranging from support vector machines, fuzzy reasoning, and Bayesian methods to snap-drift and spiking neurons. This year EANN accepted approximately 40% of submitted papers for fu- length presentation at the conference. All members of the Program Committee were asked to participate in the reviewing process. The standard of submissions was high, according to the reviewers, who did an excellent job. The Program and Organizing Committees thank them. Approximately 20% of submitted - pers will be chosen, the best according to the reviews, to be extended and - viewedagainfor inclusionin a specialissueofthe journalNeural Computing and Applications. We hope that these proceedings will help to stimulate further research and development of new applications and modes of neural computing.
Engineering Applications of Neural Networks
Title | Engineering Applications of Neural Networks PDF eBook |
Author | Lazaros Iliadis |
Publisher | Springer Nature |
Pages | 544 |
Release | 2022-06-14 |
Genre | Computers |
ISBN | 3031082230 |
This book constitutes the refereed proceedings of the 23rd International Conference on Engineering Applications of Neural Networks, EANN 2022, held in Chersonisos, Crete, Greece, in June 2022. The 37 revised full papers and 5 revised short papers presented were carefully reviewed and selected from 72 submissions. The papers are organized in topical sections on Bio inspired Modeling / Novel Neural Architectures; Classification / Clustering; Machine Learning; Convolutional / Deep Learning; Datamining / Learning / Autoencoders; Deep Learning / Blockchain; Machine Learning for Medical Images / Genome Classification; Reinforcement /Adversarial / Echo State Neural Networks; Robotics / Autonomous Vehicles, Photonic Neural Networks; Text Classification / Natural Language.
Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference
Title | Proceedings of the 21st EANN (Engineering Applications of Neural Networks) 2020 Conference PDF eBook |
Author | Lazaros Iliadis |
Publisher | Springer Nature |
Pages | 630 |
Release | 2020-05-27 |
Genre | Computers |
ISBN | 3030487911 |
This book gathers the proceedings of the 21st Engineering Applications of Neural Networks Conference, which is supported by the International Neural Networks Society (INNS). Artificial Intelligence (AI) has been following a unique course, characterized by alternating growth spurts and “AI winters.” Today, AI is an essential component of the fourth industrial revolution and enjoying its heyday. Further, in specific areas, AI is catching up with or even outperforming human beings. This book offers a comprehensive guide to AI in a variety of areas, concentrating on new or hybrid AI algorithmic approaches with robust applications in diverse sectors. One of the advantages of this book is that it includes robust algorithmic approaches and applications in a broad spectrum of scientific fields, namely the use of convolutional neural networks (CNNs), deep learning and LSTM in robotics/machine vision/engineering/image processing/medical systems/the environment; machine learning and meta learning applied to neurobiological modeling/optimization; state-of-the-art hybrid systems; and the algorithmic foundations of artificial neural networks.
Artificial Neural Networks for Engineering Applications
Title | Artificial Neural Networks for Engineering Applications PDF eBook |
Author | Alma Y Alanis |
Publisher | Academic Press |
Pages | 176 |
Release | 2019-02-13 |
Genre | Science |
ISBN | 0128182474 |
Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.
Engineering Applications of Neural Networks
Title | Engineering Applications of Neural Networks PDF eBook |
Author | Chrisina Jayne |
Publisher | Springer |
Pages | 365 |
Release | 2016-08-18 |
Genre | Computers |
ISBN | 3319441884 |
This book constitutes the refereed proceedings of the 17th International Conference on Engineering Applications of Neural Networks, EANN 2016, held in Aberdeen, UK, in September 2016. The 22 revised full papers and three short papers presented together with two tutorials were carefully reviewed and selected from 41 submissions. The papers are organized in topical sections on active learning and dynamic environments; semi-supervised modeling; classification applications; clustering applications; cyber-physical systems and cloud applications; time-series prediction; learning-algorithms.