Interior Point Techniques in Optimization

Interior Point Techniques in Optimization
Title Interior Point Techniques in Optimization PDF eBook
Author B. Jansen
Publisher Springer Science & Business Media
Pages 285
Release 2013-03-14
Genre Mathematics
ISBN 1475755619

Download Interior Point Techniques in Optimization Book in PDF, Epub and Kindle

Operations research and mathematical programming would not be as advanced today without the many advances in interior point methods during the last decade. These methods can now solve very efficiently and robustly large scale linear, nonlinear and combinatorial optimization problems that arise in various practical applications. The main ideas underlying interior point methods have influenced virtually all areas of mathematical programming including: analyzing and solving linear and nonlinear programming problems, sensitivity analysis, complexity analysis, the analysis of Newton's method, decomposition methods, polynomial approximation for combinatorial problems etc. This book covers the implications of interior techniques for the entire field of mathematical programming, bringing together many results in a uniform and coherent way. For the topics mentioned above the book provides theoretical as well as computational results, explains the intuition behind the main ideas, gives examples as well as proofs, and contains an extensive up-to-date bibliography. Audience: The book is intended for students, researchers and practitioners with a background in operations research, mathematics, mathematical programming, or statistics.

Interior Point Methods for Linear Optimization

Interior Point Methods for Linear Optimization
Title Interior Point Methods for Linear Optimization PDF eBook
Author Cornelis Roos
Publisher Springer Science & Business Media
Pages 501
Release 2006-02-08
Genre Mathematics
ISBN 0387263799

Download Interior Point Methods for Linear Optimization Book in PDF, Epub and Kindle

The era of interior point methods (IPMs) was initiated by N. Karmarkar’s 1984 paper, which triggered turbulent research and reshaped almost all areas of optimization theory and computational practice. This book offers comprehensive coverage of IPMs. It details the main results of more than a decade of IPM research. Numerous exercises are provided to aid in understanding the material.

A Mathematical View of Interior-point Methods in Convex Optimization

A Mathematical View of Interior-point Methods in Convex Optimization
Title A Mathematical View of Interior-point Methods in Convex Optimization PDF eBook
Author James Renegar
Publisher SIAM
Pages 124
Release 2001-01-01
Genre Mathematics
ISBN 9780898718812

Download A Mathematical View of Interior-point Methods in Convex Optimization Book in PDF, Epub and Kindle

Here is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.

Interior Point Approach to Linear, Quadratic and Convex Programming

Interior Point Approach to Linear, Quadratic and Convex Programming
Title Interior Point Approach to Linear, Quadratic and Convex Programming PDF eBook
Author D. den Hertog
Publisher Springer Science & Business Media
Pages 214
Release 2012-12-06
Genre Mathematics
ISBN 9401111340

Download Interior Point Approach to Linear, Quadratic and Convex Programming Book in PDF, Epub and Kindle

This book describes the rapidly developing field of interior point methods (IPMs). An extensive analysis is given of path-following methods for linear programming, quadratic programming and convex programming. These methods, which form a subclass of interior point methods, follow the central path, which is an analytic curve defined by the problem. Relatively simple and elegant proofs for polynomiality are given. The theory is illustrated using several explicit examples. Moreover, an overview of other classes of IPMs is given. It is shown that all these methods rely on the same notion as the path-following methods: all these methods use the central path implicitly or explicitly as a reference path to go to the optimum. For specialists in IPMs as well as those seeking an introduction to IPMs. The book is accessible to any mathematician with basic mathematical programming knowledge.

Primal-dual Interior-Point Methods

Primal-dual Interior-Point Methods
Title Primal-dual Interior-Point Methods PDF eBook
Author Stephen J. Wright
Publisher SIAM
Pages 309
Release 1997-01-01
Genre Interior-point methods
ISBN 9781611971453

Download Primal-dual Interior-Point Methods Book in PDF, Epub and Kindle

In the past decade, primal-dual algorithms have emerged as the most important and useful algorithms from the interior-point class. This book presents the major primal-dual algorithms for linear programming in straightforward terms. A thorough description of the theoretical properties of these methods is given, as are a discussion of practical and computational aspects and a summary of current software. This is an excellent, timely, and well-written work. The major primal-dual algorithms covered in this book are path-following algorithms (short- and long-step, predictor-corrector), potential-reduction algorithms, and infeasible-interior-point algorithms. A unified treatment of superlinear convergence, finite termination, and detection of infeasible problems is presented. Issues relevant to practical implementation are also discussed, including sparse linear algebra and a complete specification of Mehrotra's predictor-corrector algorithm. Also treated are extensions of primal-dual algorithms to more general problems such as monotone complementarity, semidefinite programming, and general convex programming problems.

Theory and Algorithms for Linear Optimization

Theory and Algorithms for Linear Optimization
Title Theory and Algorithms for Linear Optimization PDF eBook
Author Cornelis Roos
Publisher
Pages 520
Release 1997-03-04
Genre Mathematics
ISBN

Download Theory and Algorithms for Linear Optimization Book in PDF, Epub and Kindle

The approach to LO in this book is new in many aspects. In particular the IPM based development of duality theory is surprisingly elegant. The algorithmic parts of the book contain a complete discussion of many algorithmic variants, including predictor-corrector methods, partial updating, higher order methods and sensitivity and parametric analysis.

Interior-point Polynomial Algorithms in Convex Programming

Interior-point Polynomial Algorithms in Convex Programming
Title Interior-point Polynomial Algorithms in Convex Programming PDF eBook
Author Yurii Nesterov
Publisher SIAM
Pages 414
Release 1994-01-01
Genre Mathematics
ISBN 9781611970791

Download Interior-point Polynomial Algorithms in Convex Programming Book in PDF, Epub and Kindle

Specialists working in the areas of optimization, mathematical programming, or control theory will find this book invaluable for studying interior-point methods for linear and quadratic programming, polynomial-time methods for nonlinear convex programming, and efficient computational methods for control problems and variational inequalities. A background in linear algebra and mathematical programming is necessary to understand the book. The detailed proofs and lack of "numerical examples" might suggest that the book is of limited value to the reader interested in the practical aspects of convex optimization, but nothing could be further from the truth. An entire chapter is devoted to potential reduction methods precisely because of their great efficiency in practice.