Interactive Image Processing for Machine Vision
Title | Interactive Image Processing for Machine Vision PDF eBook |
Author | Bruce G. Batchelor |
Publisher | Springer |
Pages | 394 |
Release | 2012-12-06 |
Genre | Technology & Engineering |
ISBN | 1447103939 |
Machine vision systems offer great potential in a large number of areas of manufacturing industry and are used principally for Automated Visual Inspection and Robot Vision. This publication presents the state of the art in image processing. It discusses techniques which have been developed for designing machines for use in industrial inspection and robot control, putting the emphasis on software and algorithms. A comprehensive set of image processing subroutines, which together form the basic vocabulary for the versatile image processing language IIPL, is presented. This language has proved to be extremely effective, working as a design tool, in solving numerous practical inspection problems. The merging of this language with Prolog provides an even more powerful facility which retains the benefits of human and machine intelligence. The authors bring together the practical experience and the picture material from a leading industrial research laboratory and the mathematical foundations necessary to understand and apply concepts in image processing. Interactive Image Processing is a self-contained reference book that can also be used in graduate level courses in electrical engineering, computer science and physics.
Image Processing, Analysis, and Machine Vision
Title | Image Processing, Analysis, and Machine Vision PDF eBook |
Author | Milan Sonka |
Publisher | Arden Shakespeare |
Pages | 829 |
Release | 2008 |
Genre | Bilgisayar görüntüsü |
ISBN | 9780495244387 |
Dictionary of Computer Vision and Image Processing
Title | Dictionary of Computer Vision and Image Processing PDF eBook |
Author | Robert B. Fisher |
Publisher | John Wiley & Sons |
Pages | 442 |
Release | 2013-11-08 |
Genre | Computers |
ISBN | 1118706811 |
Written by leading researchers, the 2nd Edition of the Dictionary of Computer Vision & Image Processing is a comprehensive and reliable resource which now provides explanations of over 3500 of the most commonly used terms across image processing, computer vision and related fields including machine vision. It offers clear and concise definitions with short examples or mathematical precision where necessary for clarity that ultimately makes it a very usable reference for new entrants to these fields at senior undergraduate and graduate level, through to early career researchers to help build up knowledge of key concepts. As the book is a useful source for recent terminology and concepts, experienced professionals will also find it a valuable resource for keeping up to date with the latest advances. New features of the 2nd Edition: Contains more than 1000 new terms, notably an increased focus on image processing and machine vision terms; Includes the addition of reference links across the majority of terms pointing readers to further information about the concept under discussion so that they can continue to expand their understanding; Now available as an eBook with enhanced content: approximately 50 videos to further illustrate specific terms; active cross-linking between terms so that readers can easily navigate from one related term to another and build up a full picture of the topic in question; and hyperlinked references to fully embed the text in the current literature.
Front-End Vision and Multi-Scale Image Analysis
Title | Front-End Vision and Multi-Scale Image Analysis PDF eBook |
Author | Bart M. Haar Romeny |
Publisher | Springer Science & Business Media |
Pages | 470 |
Release | 2008-10-24 |
Genre | Computers |
ISBN | 140208840X |
Many approaches have been proposed to solve the problem of finding the optic flow field of an image sequence. Three major classes of optic flow computation techniques can discriminated (see for a good overview Beauchemin and Barron IBeauchemin19951): gradient based (or differential) methods; phase based (or frequency domain) methods; correlation based (or area) methods; feature point (or sparse data) tracking methods; In this chapter we compute the optic flow as a dense optic flow field with a multi scale differential method. The method, originally proposed by Florack and Nielsen [Florack1998a] is known as the Multiscale Optic Flow Constrain Equation (MOFCE). This is a scale space version of the well known computer vision implementation of the optic flow constraint equation, as originally proposed by Horn and Schunck [Horn1981]. This scale space variation, as usual, consists of the introduction of the aperture of the observation in the process. The application to stereo has been described by Maas et al. [Maas 1995a, Maas 1996a]. Of course, difficulties arise when structure emerges or disappears, such as with occlusion, cloud formation etc. Then knowledge is needed about the processes and objects involved. In this chapter we focus on the scale space approach to the local measurement of optic flow, as we may expect the visual front end to do. 17. 2 Motion detection with pairs of receptive fields As a biologically motivated start, we begin with discussing some neurophysiological findings in the visual system with respect to motion detection.
Introduction to Deep Learning
Title | Introduction to Deep Learning PDF eBook |
Author | Sandro Skansi |
Publisher | Springer |
Pages | 196 |
Release | 2018-02-04 |
Genre | Computers |
ISBN | 3319730045 |
This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website. Topics and features: introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning; discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network; examines convolutional neural networks, and the recurrent connections to a feed-forward neural network; describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning; presents a brief history of artificial intelligence and neural networks, and reviews interesting open research problems in deep learning and connectionism. This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.
Computer Vision for Visual Effects
Title | Computer Vision for Visual Effects PDF eBook |
Author | Richard J. Radke |
Publisher | Cambridge University Press |
Pages | 409 |
Release | 2013 |
Genre | Business & Economics |
ISBN | 0521766877 |
This book explores the fundamental computer vision principles and state-of-the-art algorithms used to create cutting-edge visual effects for movies and television. It describes classical computer vision algorithms and recent developments, features more than 200 original images, and contains in-depth interviews with Hollywood visual effects artists that tie the mathematical concepts to real-world filmmaking.
Feature Extraction and Image Processing for Computer Vision
Title | Feature Extraction and Image Processing for Computer Vision PDF eBook |
Author | Mark Nixon |
Publisher | Academic Press |
Pages | 629 |
Release | 2012-12-18 |
Genre | Computers |
ISBN | 0123978246 |
Feature Extraction and Image Processing for Computer Vision is an essential guide to the implementation of image processing and computer vision techniques, with tutorial introductions and sample code in Matlab. Algorithms are presented and fully explained to enable complete understanding of the methods and techniques demonstrated. As one reviewer noted, "The main strength of the proposed book is the exemplar code of the algorithms." Fully updated with the latest developments in feature extraction, including expanded tutorials and new techniques, this new edition contains extensive new material on Haar wavelets, Viola-Jones, bilateral filtering, SURF, PCA-SIFT, moving object detection and tracking, development of symmetry operators, LBP texture analysis, Adaboost, and a new appendix on color models. Coverage of distance measures, feature detectors, wavelets, level sets and texture tutorials has been extended. - Named a 2012 Notable Computer Book for Computing Methodologies by Computing Reviews - Essential reading for engineers and students working in this cutting-edge field - Ideal module text and background reference for courses in image processing and computer vision - The only currently available text to concentrate on feature extraction with working implementation and worked through derivation