Interactive Fuzzy Optimization
Title | Interactive Fuzzy Optimization PDF eBook |
Author | Mario Fedrizzi |
Publisher | Springer Science & Business Media |
Pages | 227 |
Release | 2012-12-06 |
Genre | Business & Economics |
ISBN | 3642457002 |
The title of this book seems to indicate that the volume is dedicated to a very specialized and narrow area, i. e. , to the relationship between a very special type of optimization and mathematical programming. The contrary is however true. Optimization is certainly a very old and classical area which is of high concern to many disciplines. Engineering as well as management, politics as well as medicine, artificial intelligence as well as operations research, and many other fields are in one way or another concerned with optimization of designs, decisions, structures, procedures, or information processes. It is therefore not surprising that optimization has not grown in a homogeneous way in one discipline either. Traditionally, there was a distinct difference between optimization in engineering, optimization in management, and optimization as it was treated in mathematical sciences. However, for the last decades all these fields have to an increasing degree interacted and contributed to the area of optimization or decision making. In some respects, new disciplines such as artificial intelligence, descriptive decision theory, or modern operations research have facilitated, or even made possible the interaction between the different classical disciplines because they provided bridges and links between areas which had been developing and applied quite independently before. The development of optimiiation over the last decades can best be appreciated when looking at the traditional model of optimization. For a well-structured, Le.
Fuzzy Sets and Interactive Multiobjective Optimization
Title | Fuzzy Sets and Interactive Multiobjective Optimization PDF eBook |
Author | Masatoshi Sakawa |
Publisher | Springer Science & Business Media |
Pages | 319 |
Release | 2013-11-21 |
Genre | Mathematics |
ISBN | 1489916334 |
The main characteristics of the real-world decision-making problems facing humans today are multidimensional and have multiple objectives including eco nomic, environmental, social, and technical ones. Hence, it seems natural that the consideration of many objectives in the actual decision-making process re quires multiobjective approaches rather than single-objective. One ofthe major systems-analytic multiobjective approaches to decision-making under constraints is multiobjective optimization as a generalization of traditional single-objective optimization. Although multiobjective optimization problems differ from single objective optimization problems only in the plurality of objective functions, it is significant to realize that multiple objectives are often noncom mensurable and conflict with each other in multiobjective optimization problems. With this ob servation, in multiobjective optimization, the notion of Pareto optimality or effi ciency has been introduced instead of the optimality concept for single-objective optimization. However, decisions with Pareto optimality or efficiency are not uniquely determined; the final decision must be selected from among the set of Pareto optimal or efficient solutions. Therefore, the question is, how does one find the preferred point as a compromise or satisficing solution with rational pro cedure? This is the starting point of multiobjective optimization. To be more specific, the aim is to determine how one derives a compromise or satisficing so lution of a decision maker (DM), which well represents the subjective judgments, from a Pareto optimal or an efficient solution set.
Fuzzy Optimization
Title | Fuzzy Optimization PDF eBook |
Author | Weldon A. Lodwick |
Publisher | Springer |
Pages | 535 |
Release | 2010-07-23 |
Genre | Technology & Engineering |
ISBN | 3642139353 |
Optimization is an extremely important area in science and technology which provides powerful and useful tools and techniques for the formulation and solution of a multitude of problems in which we wish, or need, to to find a best possible option or solution. The volume is divided into a coupe of parts which present various aspects of fuzzy optimization, some related more general issues, and applications.
Fuzzy Optimization
Title | Fuzzy Optimization PDF eBook |
Author | Miguel Delgado |
Publisher | |
Pages | 478 |
Release | 1994 |
Genre | Mathematics |
ISBN |
Fuzzy Sets Based Heuristics for Optimization
Title | Fuzzy Sets Based Heuristics for Optimization PDF eBook |
Author | José-Luis Verdegay |
Publisher | Springer |
Pages | 357 |
Release | 2012-11-03 |
Genre | Mathematics |
ISBN | 3540364617 |
The aim of this volume is to show how Fuzzy Sets and Systems can help to provide robust and adaptive heuristic optimization algorithms in a variety of situations. The book presents the state of the art and gives a broad overview on the real practical applications that Fuzzy Sets, based on heuristic algorithms, have.
Genetic Algorithms and Fuzzy Multiobjective Optimization
Title | Genetic Algorithms and Fuzzy Multiobjective Optimization PDF eBook |
Author | Masatoshi Sakawa |
Publisher | Springer Science & Business Media |
Pages | 306 |
Release | 2002 |
Genre | Business & Economics |
ISBN | 9780792374527 |
Since the introduction of genetic algorithms in the 1970s, an enormous number of articles together with several significant monographs and books have been published on this methodology. As a result, genetic algorithms have made a major contribution to optimization, adaptation, and learning in a wide variety of unexpected fields. Over the years, many excellent books in genetic algorithm optimization have been published; however, they focus mainly on single-objective discrete or other hard optimization problems under certainty. There appears to be no book that is designed to present genetic algorithms for solving not only single-objective but also fuzzy and multiobjective optimization problems in a unified way. Genetic Algorithms And Fuzzy Multiobjective Optimization introduces the latest advances in the field of genetic algorithm optimization for 0-1 programming, integer programming, nonconvex programming, and job-shop scheduling problems under multiobjectiveness and fuzziness. In addition, the book treats a wide range of actual real world applications. The theoretical material and applications place special stress on interactive decision-making aspects of fuzzy multiobjective optimization for human-centered systems in most realistic situations when dealing with fuzziness. The intended readers of this book are senior undergraduate students, graduate students, researchers, and practitioners in the fields of operations research, computer science, industrial engineering, management science, systems engineering, and other engineering disciplines that deal with the subjects of multiobjective programming for discrete or other hard optimization problems under fuzziness. Real world research applications are used throughout the book to illustrate the presentation. These applications are drawn from complex problems. Examples include flexible scheduling in a machine center, operation planning of district heating and cooling plants, and coal purchase planning in an actual electric power plant.
Optimization Models Using Fuzzy Sets and Possibility Theory
Title | Optimization Models Using Fuzzy Sets and Possibility Theory PDF eBook |
Author | J. Kacprzyk |
Publisher | Springer Science & Business Media |
Pages | 465 |
Release | 2013-11-11 |
Genre | Mathematics |
ISBN | 9400938691 |
Optimization is of central concern to a number of discip lines. Operations Research and Decision Theory are often consi dered to be identical with optimizationo But also in other areas such as engineering design, regional policy, logistics and many others, the search for optimal solutions is one of the prime goals. The methods and models which have been used over the last decades in these areas have primarily been "hard" or "crisp", i. e. the solutions were considered to be either fea sible or unfeasible, either above a certain aspiration level or below. This dichotomous structure of methods very often forced the modeller to approximate real problem situations of the more-or-less type by yes-or-no-type models, the solutions of which might turn out not to be the solutions to the real prob lems. This is particularly true if the problem under considera tion includes vaguely defined relationships, human evaluations, uncertainty due to inconsistent or incomplete evidence, if na tural language has to be modelled or if state variables can only be described approximately. Until recently, everything which was not known with cer tainty, i. e. which was not known to be either true or false or which was not known to either happen with certainty or to be impossible to occur, was modelled by means of probabilitieso This holds in particular for uncertainties concerning the oc currence of events.