Interactions Between Compressed Sensing Random Matrices and High Dimensional Geometry
Title | Interactions Between Compressed Sensing Random Matrices and High Dimensional Geometry PDF eBook |
Author | Djalil Chafaï |
Publisher | SMF |
Pages | 181 |
Release | 2012 |
Genre | Geometry |
ISBN | 9782856293706 |
"This book is based on a series of post-doctoral level lectures given at Université Paris-Est Marne-la-Vallée in November 2009 ..."--Abstract.
A Mathematical Introduction to Compressive Sensing
Title | A Mathematical Introduction to Compressive Sensing PDF eBook |
Author | Simon Foucart |
Publisher | Springer Science & Business Media |
Pages | 634 |
Release | 2013-08-13 |
Genre | Computers |
ISBN | 0817649484 |
At the intersection of mathematics, engineering, and computer science sits the thriving field of compressive sensing. Based on the premise that data acquisition and compression can be performed simultaneously, compressive sensing finds applications in imaging, signal processing, and many other domains. In the areas of applied mathematics, electrical engineering, and theoretical computer science, an explosion of research activity has already followed the theoretical results that highlighted the efficiency of the basic principles. The elegant ideas behind these principles are also of independent interest to pure mathematicians. A Mathematical Introduction to Compressive Sensing gives a detailed account of the core theory upon which the field is build. With only moderate prerequisites, it is an excellent textbook for graduate courses in mathematics, engineering, and computer science. It also serves as a reliable resource for practitioners and researchers in these disciplines who want to acquire a careful understanding of the subject. A Mathematical Introduction to Compressive Sensing uses a mathematical perspective to present the core of the theory underlying compressive sensing.
High-Dimensional Probability
Title | High-Dimensional Probability PDF eBook |
Author | Roman Vershynin |
Publisher | Cambridge University Press |
Pages | 299 |
Release | 2018-09-27 |
Genre | Business & Economics |
ISBN | 1108415199 |
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Handbook of Mathematical Methods in Imaging
Title | Handbook of Mathematical Methods in Imaging PDF eBook |
Author | Otmar Scherzer |
Publisher | Springer Science & Business Media |
Pages | 1626 |
Release | 2010-11-23 |
Genre | Mathematics |
ISBN | 0387929193 |
The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 150 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and computer scientists working in imaging will also find this handbook useful.
Sampling Theory, a Renaissance
Title | Sampling Theory, a Renaissance PDF eBook |
Author | Götz E. Pfander |
Publisher | Birkhäuser |
Pages | 532 |
Release | 2015-12-08 |
Genre | Mathematics |
ISBN | 3319197495 |
Reconstructing or approximating objects from seemingly incomplete information is a frequent challenge in mathematics, science, and engineering. A multitude of tools designed to recover hidden information are based on Shannon’s classical sampling theorem, a central pillar of Sampling Theory. The growing need to efficiently obtain precise and tailored digital representations of complex objects and phenomena requires the maturation of available tools in Sampling Theory as well as the development of complementary, novel mathematical theories. Today, research themes such as Compressed Sensing and Frame Theory re-energize the broad area of Sampling Theory. This volume illustrates the renaissance that the area of Sampling Theory is currently experiencing. It touches upon trendsetting areas such as Compressed Sensing, Finite Frames, Parametric Partial Differential Equations, Quantization, Finite Rate of Innovation, System Theory, as well as sampling in Geometry and Algebraic Topology.
Sparse Polynomial Approximation of High-Dimensional Functions
Title | Sparse Polynomial Approximation of High-Dimensional Functions PDF eBook |
Author | Ben Adcock |
Publisher | SIAM |
Pages | 310 |
Release | 2022-02-16 |
Genre | Mathematics |
ISBN | 161197688X |
Over seventy years ago, Richard Bellman coined the term “the curse of dimensionality” to describe phenomena and computational challenges that arise in high dimensions. These challenges, in tandem with the ubiquity of high-dimensional functions in real-world applications, have led to a lengthy, focused research effort on high-dimensional approximation—that is, the development of methods for approximating functions of many variables accurately and efficiently from data. This book provides an in-depth treatment of one of the latest installments in this long and ongoing story: sparse polynomial approximation methods. These methods have emerged as useful tools for various high-dimensional approximation tasks arising in a range of applications in computational science and engineering. It begins with a comprehensive overview of best s-term polynomial approximation theory for holomorphic, high-dimensional functions, as well as a detailed survey of applications to parametric differential equations. It then describes methods for computing sparse polynomial approximations, focusing on least squares and compressed sensing techniques. Sparse Polynomial Approximation of High-Dimensional Functions presents the first comprehensive and unified treatment of polynomial approximation techniques that can mitigate the curse of dimensionality in high-dimensional approximation, including least squares and compressed sensing. It develops main concepts in a mathematically rigorous manner, with full proofs given wherever possible, and it contains many numerical examples, each accompanied by downloadable code. The authors provide an extensive bibliography of over 350 relevant references, with an additional annotated bibliography available on the book’s companion website (www.sparse-hd-book.com). This text is aimed at graduate students, postdoctoral fellows, and researchers in mathematics, computer science, and engineering who are interested in high-dimensional polynomial approximation techniques.
Modern Aspects of Random Matrix Theory
Title | Modern Aspects of Random Matrix Theory PDF eBook |
Author | Van H. Vu |
Publisher | American Mathematical Society |
Pages | 186 |
Release | 2014-07-16 |
Genre | Mathematics |
ISBN | 0821894714 |
The theory of random matrices is an amazingly rich topic in mathematics. Random matrices play a fundamental role in various areas such as statistics, mathematical physics, combinatorics, theoretical computer science, number theory and numerical analysis. This volume is based on lectures delivered at the 2013 AMS Short Course on Random Matrices, held January 6-7, 2013 in San Diego, California. Included are surveys by leading researchers in the field, written in introductory style, aiming to provide the reader a quick and intuitive overview of this fascinating and rapidly developing topic. These surveys contain many major recent developments, such as progress on universality conjectures, connections between random matrices and free probability, numerical algebra, combinatorics and high-dimensional geometry, together with several novel methods and a variety of open questions.